TensorFlow实战笔记(17)---TFlearn
目录:
- 分布式Estimator
- 自定义模型
- 建立自己的机器学习Estimator
- 调节RunConfig运行时的参数
- Experiment和LearnRunner
- 深度学习Estimator
- 深度神经网络
- 广度深度模型
- 机器学习Estimator
- 线性/逻辑回归
- 随机森林
- K均值聚类
- 支持向量机
- DataFrame
- 监督器Monitors
- 代码例子
一、分布式Estimator
Estimator包含各种机器学习和深度学习的类,用户能直接使用这些高阶类,同时可根据实际的应用需求快速创建自己的子类。
六、代码例子---TFlearn实现AlexNet
数据为鲜花数据集 :
17_Category_Flower 是一个不同种类鲜花的图像数据,包含 17 不同种类的鲜花,每类 80 张该类鲜花的图片,鲜花种类是英国地区常见鲜花。

代码:
import tflearn
from tflearn.layers.core import input_data, dropout, fully_connected
from tflearn.layers.conv import conv_2d, max_pool_2d
from tflearn.layers.normalization import local_response_normalization
from tflearn.layers.estimator import regression import tflearn.datasets.oxflower17 as oxflower17
X, Y = oxflower17.load_data(one_hot=True, resize_pics=(227, 227)) ##此句调用了tflearn文件夹下dataset中oxflower17.py函数,下载数据 #构建AlexNet网络 # Building 'AlexNet'
network = input_data(shape=[None, 227, 227, 3])
network = conv_2d(network, 96, 11, strides=4, activation='relu')
network = max_pool_2d(network, 3, strides=2)
network = local_response_normalization(network)
network = conv_2d(network, 256, 5, activation='relu')
network = max_pool_2d(network, 3, strides=2)
network = local_response_normalization(network)
network = conv_2d(network, 384, 3, activation='relu')
network = conv_2d(network, 384, 3, activation='relu')
network = conv_2d(network, 256, 3, activation='relu')
network = max_pool_2d(network, 3, strides=2)
network = local_response_normalization(network)
network = fully_connected(network, 4096, activation='tanh')
network = dropout(network, 0.5)
network = fully_connected(network, 4096, activation='tanh')
network = dropout(network, 0.5)
network = fully_connected(network, 17, activation='softmax')
network = regression(network, optimizer='momentum',
loss='categorical_crossentropy',
learning_rate=0.001)
# Training
model = tflearn.DNN(network, checkpoint_path='model_alexnet',
max_checkpoints=1, tensorboard_verbose=2)
model.fit(x, y, n_epoch=1000, validation_set=0.1, shuffle=True,
show_metric=True, batch_size=64, snapshot_step=200,
snapshot_epoch=False, run_id='alexnet_oxflowers17')
TensorFlow实战笔记(17)---TFlearn的更多相关文章
- tensorflow实战笔记(19)----使用freeze_graph.py将ckpt转为pb文件
一.作用: https://blog.csdn.net/yjl9122/article/details/78341689 这节是关于tensorflow的Freezing,字面意思是冷冻,可理解为整合 ...
- 深度学习tensorflow实战笔记(2)图像转换成tfrecords和读取
1.准备数据 首选将自己的图像数据分类分别放在不同的文件夹下,比如新建data文件夹,data文件夹下分别存放up和low文件夹,up和low文件夹下存放对应的图像数据.也可以把up和low文件夹换成 ...
- 深度学习tensorflow实战笔记 用预训练好的VGG-16模型提取图像特征
1.首先就要下载模型结构 首先要做的就是下载训练好的模型结构和预训练好的模型,结构地址是:点击打开链接 模型结构如下: 文件test_vgg16.py可以用于提取特征.其中vgg16.npy是需要单独 ...
- tensorflow实战笔记(20)----textRNN
https://www.cnblogs.com/jiangxinyang/p/10208227.html https://www.cnblogs.com/jiangxinyang/p/10241243 ...
- tensorflow实战笔记(18)----textCNN
一.import 包 import os import pandas as pd import csv import time import datetime import numpy as np i ...
- 深度学习tensorflow实战笔记(1)全连接神经网络(FCN)训练自己的数据(从txt文件中读取)
1.准备数据 把数据放进txt文件中(数据量大的话,就写一段程序自己把数据自动的写入txt文件中,任何语言都能实现),数据之间用逗号隔开,最后一列标注数据的标签(用于分类),比如0,1.每一行表示一个 ...
- [Tensorflow实战Google深度学习框架]笔记4
本系列为Tensorflow实战Google深度学习框架知识笔记,仅为博主看书过程中觉得较为重要的知识点,简单摘要下来,内容较为零散,请见谅. 2017-11-06 [第五章] MNIST数字识别问题 ...
- TensorFlow+实战Google深度学习框架学习笔记(5)----神经网络训练步骤
一.TensorFlow实战Google深度学习框架学习 1.步骤: 1.定义神经网络的结构和前向传播的输出结果. 2.定义损失函数以及选择反向传播优化的算法. 3.生成会话(session)并且在训 ...
- TensorFlow学习笔记——LeNet-5(训练自己的数据集)
在之前的TensorFlow学习笔记——图像识别与卷积神经网络(链接:请点击我)中了解了一下经典的卷积神经网络模型LeNet模型.那其实之前学习了别人的代码实现了LeNet网络对MNIST数据集的训练 ...
随机推荐
- 洛谷 P1481 魔族密码
P1481 魔族密码 题目描述 风之子刚走进他的考场,就…… 花花:当当当当~~偶是魅力女皇——花花!!^^(华丽出场,礼炮,鲜花) 风之子:我呕……(杀死人的眼神)快说题目!否则……-_-### 花 ...
- Spring Data Jpa-动态查询条件
/** * * 查看日志列表-按照时间倒序排列 * * @author: wyc * @createTime: 2017年4月20日 下午4:24:43 * @history: * @return L ...
- Mac OSX:最简单的安装ant方法
安装ant最简单的方法就是通过brew.步骤如下:1. 安装brew(如果已经安装可以跳过这步).ruby -e "$(curl -fsSL https://raw.github.com/m ...
- HDU 5393
[background] 保研的事终于告一段落了,之后去北京折腾了一段时间,本以为会在那里实习一个月,谁知道刚去ICT,心中就各种反感,可能是因为LP的态度吧,否则我可能会留在那里读研也说不定.花了两 ...
- XMPP基本内容简单介绍
即时通讯技术简单介绍 即时通讯技术(IM)支持用户在线实时交谈.假设要发送一条信息,用户须要打开一个小窗体,以便让用户及其朋友在当中输入信息并让交谈两方都看到交谈的内容.有很多的IM系统,如AOL I ...
- UNIX环境编程学习——反思认识
学习情况: 有关UNIX系统环境编程的学习时间用来非常长的时间.可是感觉效果还是不是太好,在中间经过了期末考试.用来非常长的时间用来学习专业课.就将该过程的学习放到了一边上,放假以后又回家造成了 ...
- Win8.1下COCOS2D-X 3.4环境搭建
Cocos2dx_3.4开发环境搭建,并编译成APK 第一步:须要下载的:(windows64位系统下环境搭建) Ant apache-ant-1.9.4-bin.zip NDK and ...
- 依据矩阵的二维相关系数进行OCR识别
我想通过简单的模板匹配来进行图像识别. 把预处理好的字符图片,分别与A到Z的样本图片进行模板匹配. 结果最大的表明相关性最大,就能够识别字符图片了. 在实际应用中.我用了openCV的matchTem ...
- 针对深度学习(神经网络)的AI框架调研
针对深度学习(神经网络)的AI框架调研 在我们的AI安全引擎中未来会使用深度学习(神经网络),后续将引入AI芯片,因此重点看了下业界AI芯片厂商和对应芯片的AI框架,包括Intel(MKL CPU). ...
- z-index 、层叠上下文、层叠级别、z-index失效
一.z-index z-index默认处于非激活状态,只有定位元素(即position:relative/absolute/fixed时)才会被激活. z-index与层叠上下文关联. 当z-inde ...