传送门

Description

这片树林里有N座房子,M条有向道路,组成了一张有向无环图。

树林里的树非常茂密,足以遮挡视线,但是沿着道路望去,却是视野开阔。如果从房子A沿着路走下去能够到达B,那么在A和B里的人是能够相互望见的。

现在cl2要在这N座房子里选择K座作为藏身点,同时vani也专挑cl2作为藏身点的房子进去寻找,为了避免被vani看见,cl2要求这K个藏身点的任意两个之间都没有路径相连。

为了让vani更难找到自己,cl2想知道最多能选出多少个藏身点?

Input

第一行两个整数N,M。

接下来M行每行两个整数x、y,表示一条从x到y的有向道路。

Output

一个整数K,表示最多能选取的藏身点个数。

Sample Input

4 4

1 2

3 2

3 4

4 2

Sample Output

2

HINT

对于20% 的数据,N≤10,M<=20。

对于60% 的数据, N≤100,M<=1000。

对于100% 的数据,N≤200,M<=30000,1<=x,y<=N。

Solution

先把DAG传递闭包,然后求出新图的拆点二分图的最大匹配数即可

Code

#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <iostream>
#include <algorithm>
#define F(i,a,b) for(register int i=(a);i<=(b);i++)
using namespace std; int read() {
int x=0,f=1; char c=getchar();
while(!isdigit(c)) {if(c=='-')f=-f;c=getchar();}
while(isdigit(c)) x=(x<<1)+(x<<3)+c-48,c=getchar();
return x*f;
} const int N=256;
bool vis[N],suc[N];
int n,m;
int mat[N],map[N][N],hide[N]; bool dfs(int u) {
F(i,1,n) if(map[u][i]&&!vis[i]) {
vis[i]=1;
if(!mat[i] || dfs(mat[i])) {mat[i]=u;return 1;}
}
return 0;
} int main() {
n=read(),m=read();
F(i,1,m) {
int x=read(),y=read();
map[x][y]=1;
}
F(i,1,n) map[i][i]=1;
F(k,1,n) F(i,1,n) F(j,1,n) map[i][j]|=map[i][k]&&map[k][j];
F(i,1,n) map[i][i]=0;
int ans=n;
F(i,1,n) {
memset(vis,0,sizeof(vis));
ans-=dfs(i);
}
printf("%d\n",ans);
//以下注释部分用于求方案
// F(i,1,n) suc[mat[i]]=1;
// int tot=0;
// F(i,1,n) if(!suc[i]) hide[++tot]=i;
// memset(vis,0,sizeof(vis));
// bool fla=1;
// while(fla) {
// fla=0;
// F(i,1,ans) F(j,1,n) if(map[hide[i]][j]) vis[j]=1;
// F(i,1,ans) if(vis[hide[i]]) {
// fla=1;
// while(vis[hide[i]]) hide[i]=mat[hide[i]];
// }
// }
// F(i,1,ans) printf("%d ",hide[i]);putchar('\n');
return 0;
}

[tyvj1957 Poetize5] Vani和Cl2捉迷藏 (最小路径可重点覆盖+二分图最大匹配)的更多相关文章

  1. joyoi1957 「Poetize5」Vani和Cl2捉迷藏

    最小路径可重点覆盖.先传递闭包,然后拆点,\(n-\)最大匹配,看算法竞赛进阶指南. #include <iostream> #include <cstring> #inclu ...

  2. POJ1422 Air Raid 和 CH6902 Vani和Cl2捉迷藏

    Air Raid Language:Default Air Raid Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 9547 A ...

  3. 【JZOJ3423】Vani和Cl2捉迷藏&【BZOJ1143】祭祀river

    description vani和cl2在一片树林里捉迷藏-- 这片树林里有N座房子,M条有向道路,组成了一张有向无环图. 树林里的树非常茂密,足以遮挡视线,但是沿着道路望去,却是视野开阔.如果从房子 ...

  4. CODE[VS]2494 Vani和Cl2捉迷藏

    原题链接 这里有一个结论:最多能选取的藏身点个数等于最小路径可重复点覆盖的路径总数. 所以我们可以先传递闭包,然后求最小路径点覆盖即可. #include<cstdio> #include ...

  5. 「Poetize5」Vani和Cl2捉迷藏

    描述 Description 这片树林里有N座房子,M条有向道路,组成了一张有向无环图.树林里的树非常茂密,足以遮挡视线,但是沿着道路望去,却是视野开阔.如果从房子A沿着路走下去能够到达B,那么在A和 ...

  6. codevs 2494 Vani和Cl2捉迷藏

    /* 一开始大意了 以为和bzoj上的祭祀是一样的(毕竟样例都一样) 这里不知相邻的点可以相互到达 间接相连的也可以到达 所以floyed先建立一下关系 再跑最大独立集 下面贴一下95 和 100的代 ...

  7. POJ 1442 Air Raid(DAG图的最小路径覆盖)

    题意: 有一个城镇,它的所有街道都是单行(即有向)的,并且每条街道都是和两个路口相连.同时已知街道不会形成回路. 可以在任意一个路口放置一个伞兵,这个伞兵会顺着街道走,依次经过若干个路口. 问最少需要 ...

  8. 网络流二十四题之P2764 最小路径覆盖问题

    题目描述 给定有向图 G=(V,E)G=(V,E) .设 PP 是 GG 的一个简单路(顶点不相交)的集合.如果 VV 中每个定点恰好在PP的一条路上,则称 PP 是 GG 的一个路径覆盖.PP中路径 ...

  9. [LeetCode] Minimum Path Sum 最小路径和

    Given a m x n grid filled with non-negative numbers, find a path from top left to bottom right which ...

随机推荐

  1. OC基础回想(十二)协议

    在OC基础(十一)中我们讨论了类别和非正式协议的奇异之处.在使用非正式协议时.能够仅仅实现你想要获得响应的方法.也不必在对象中声明不论什么内容来表示该对象可用作托付对象. 全部这些任务能够用最少的代码 ...

  2. HDU1573 X问题【一元线性同余方程组】

    题目链接: http://acm.hdu.edu.cn/showproblem.php? pid=1573 题目大意: 求在小于等于N的正整数中有多少个X满足:X mod a[0] = b[0], X ...

  3. C++智能指针--auto_ptr指针

    auto_ptr是C++标准库提供的类模板,头文件<memory>,auto_ptr对象通过初始化指向由new创建的动态内存,它是这块内存的拥有者,一块内存不能同一时候被分给两个拥有者.当 ...

  4. 【HDOJ 2255】奔小康赚大钱(KM算法)

    [HDOJ 2255]奔小康赚大钱(KM算法) 奔小康赚大钱 Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K ...

  5. WPF学习笔记——为BUTTON添加背景图片

    首先要肯定,代码: <Style x:Key="UserItemButton" TargetType="Button"> <Setter Pr ...

  6. C# winform 组件---- folderBrowserDialog与openFileDialog(转)

    C# winform 组件---- folderBrowserDialog与openFileDialog 2009-06-27 13:36 2153人阅读 评论(1) 收藏 举报 winformc#b ...

  7. LBS(定位)的使用

    一.LBS(定位)的使用 1.使用框架Core Location 2.CLLocationManager (1)CoreLocation中使用CLLocationManager对象来做用户定位 (2) ...

  8. Oracle_exp/expdp备份

    目录索引 1.exp和expdp的区别 2.expdp导出数据库流程 一.↓↓exp和expdp的区别↓↓ 1.exp和expdp最明显的区别就是导出速度的不同.expdp导出是并行导出(如果把exp ...

  9. Web Api跨域登录问题

    最近项目第一次尝试使用web api,照搬了一般mvc的Forms登录方式,在和前端对接的时候出现一个问题: 前端使用ajax调用登录接口完成登录后,再调用别的接口,被判断为未登录. 如果直接在浏览器 ...

  10. CSS的常用属性(二)

    盒子模型之边框 border-(top/bottom/left/right)-style: solid 边框的风格 如(solid 实线,dotted 点线,dashed 虚线) border-top ...