点击打开链接题目链接

Qin Shi Huang's National Road System

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)

Total Submission(s): 5023    Accepted Submission(s): 1749

Problem Description
During the Warring States Period of ancient China(476 BC to 221 BC), there were seven kingdoms in China ---- they were Qi, Chu, Yan, Han, Zhao, Wei and Qin. Ying Zheng was the king of the kingdom Qin. Through 9 years of wars, he finally conquered all six other
kingdoms and became the first emperor of a unified China in 221 BC. That was Qin dynasty ---- the first imperial dynasty of China(not to be confused with the Qing Dynasty, the last dynasty of China). So Ying Zheng named himself "Qin Shi Huang" because "Shi
Huang" means "the first emperor" in Chinese.




Qin Shi Huang undertook gigantic projects, including the first version of the Great Wall of China, the now famous city-sized mausoleum guarded by a life-sized Terracotta Army, and a massive national road system. There is a story about the road system:

There were n cities in China and Qin Shi Huang wanted them all be connected by n-1 roads, in order that he could go to every city from the capital city Xianyang.

Although Qin Shi Huang was a tyrant, he wanted the total length of all roads to be minimum,so that the road system may not cost too many people's life. A daoshi (some kind of monk) named Xu Fu told Qin Shi Huang that he could build a road by magic and that
magic road would cost no money and no labor. But Xu Fu could only build ONE magic road for Qin Shi Huang. So Qin Shi Huang had to decide where to build the magic road. Qin Shi Huang wanted the total length of all none magic roads to be as small as possible,
but Xu Fu wanted the magic road to benefit as many people as possible ---- So Qin Shi Huang decided that the value of A/B (the ratio of A to B) must be the maximum, which A is the total population of the two cites connected by the magic road, and B is the
total length of none magic roads.

Would you help Qin Shi Huang?

A city can be considered as a point, and a road can be considered as a line segment connecting two points.
 
Input
The first line contains an integer t meaning that there are t test cases(t <= 10).

For each test case:

The first line is an integer n meaning that there are n cities(2 < n <= 1000).

Then n lines follow. Each line contains three integers X, Y and P ( 0 <= X, Y <= 1000, 0 < P < 100000). (X, Y) is the coordinate of a city and P is the population of that city.

It is guaranteed that each city has a distinct location.
 
Output
For each test case, print a line indicating the above mentioned maximum ratio A/B. The result should be rounded to 2 digits after decimal point.
 
Sample Input
2
4
1 1 20
1 2 30
200 2 80
200 1 100
3
1 1 20
1 2 30
2 2 40
 
Sample Output
65.00
70.00
 
Source
 
秦王想建路使每一个城市连通 有个法师能够使某一条路花费为0
法师希望这条路两边城市的人越多越好
秦王希望建路的花费最少
A代表人数B代表花费
问A/B的最大值

思路:
先用最小生成树找出花费 然后遍历全部点 假设花费为0的路正好在最小生成树的路径上
则B=sum-dis[i][j];
否则 须要找出环上最长的一条路
代码:
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
#define INF 0x3f3f3f3f*1.0
using namespace std;
double getdistence(int x1,int y1,int x2,int y2){
double xx=sqrt((x1-x2)*(x1-x2)+(y1-y2)*(y1-y2));
return xx;
}
int n;
double kill;
struct Node{
int x,y,p;
}node[1111];
bool visit[1111][1111],vis[1111];
double dis[1111][1111],path[1111][1111];
int pre[1111];
void init(){
memset(visit,0,sizeof(visit));
memset(vis,0,sizeof(vis));
memset(path,0,sizeof(path));
kill=0.0;
for(int i=1;i<=n;i++)
scanf("%d %d %d",&node[i].x,&node[i].y,&node[i].p);
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++)
dis[i][j]=getdistence(node[i].x,node[i].y,node[j].x,node[j].y);
}
void prim(){
double dist[1111];
vis[1]=1;
for(int i=1;i<=n;i++){
dist[i]=dis[1][i];
pre[i]=1;
}
int p,k;
p=-1;
double minn;
for(int i=1;i<n;i++){
minn=INF;
for(int j=1;j<=n;j++){
if(!vis[j]&&minn>dist[j]){
minn=dist[j];
k=j;
}
}
visit[k][pre[k]]=visit[pre[k]][k]=1;
kill+=minn;
vis[k]=1;
for(int j=1;j<=n;j++){
if(!vis[j]&&dist[j]>dis[k][j]){
dist[j]=dis[k][j];
pre[j]=k;
}
if(vis[j]&&j!=k){
path[j][k]=path[k][j]=max(path[j][pre[k]],dist[k]);
}
}
}
}
void solve(){
double ans=0.0;
for(int i=1;i<=n;i++){
for(int j=1;j<=n;j++){
if(j!=i){
if(visit[i][j])
ans=max(ans,(node[i].p+node[j].p)*1.0/(kill-dis[i][j]));
else
ans=max(ans,(node[i].p+node[j].p)*1.0/(kill-path[i][j]));
}
}
}
printf("%.2f\n",ans);
}
int main(){
int t;
scanf("%d",&t);
while(t--){
scanf("%d",&n);
init();
prim();
solve();
}
return 0;
}

HDU 4081 Qin Shi Huang&#39;s National Road System 最小生成树的更多相关文章

  1. HDU 4081 Qin Shi Huang&#39;s National Road System(最小生成树/次小生成树)

    题目链接:传送门 题意: 有n坐城市,知道每坐城市的坐标和人口.如今要在全部城市之间修路,保证每一个城市都能相连,而且保证A/B 最大.全部路径的花费和最小,A是某条路i两端城市人口的和,B表示除路i ...

  2. HDU4081 Qin Shi Huang&#39;s National Road System【prim最小生成树+枚举】

    先求出最小生成树,然后枚举树上的边,对于每条边"分别"找出这条割边形成的两个块中点权最大的两个 1.因为结果是A/B.A的变化会引起B的变化,两个制约.无法直接贪心出最大的A/B. ...

  3. HDU 4081 Qin Shi Huang's National Road System 最小生成树+倍增求LCA

    原题链接:http://acm.hdu.edu.cn/showproblem.php?pid=4081 Qin Shi Huang's National Road System Time Limit: ...

  4. HDU 4081 Qin Shi Huang's National Road System 次小生成树变种

    Qin Shi Huang's National Road System Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/3 ...

  5. hdu 4081 Qin Shi Huang's National Road System (次小生成树)

    Qin Shi Huang's National Road System Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/3 ...

  6. hdu 4081 Qin Shi Huang's National Road System (次小生成树的变形)

    题目:Qin Shi Huang's National Road System Qin Shi Huang's National Road System Time Limit: 2000/1000 M ...

  7. hdu 4081 Qin Shi Huang's National Road System 树的基本性质 or 次小生成树思想 难度:1

    During the Warring States Period of ancient China(476 BC to 221 BC), there were seven kingdoms in Ch ...

  8. HDU 4081—— Qin Shi Huang's National Road System——————【次小生成树、prim】

    Qin Shi Huang's National Road System Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/3 ...

  9. HDU - 4081 Qin Shi Huang's National Road System 【次小生成树】

    题目链接 http://acm.hdu.edu.cn/showproblem.php?pid=4081 题意 给出n个城市的坐标 以及 每个城市里面有多少人 秦始皇想造路 让每个城市都连通 (直接或者 ...

随机推荐

  1. Python:Fatal error in launcher: Unable to create process using 问题排查

    cmd> django-admin 回车Fatal error in launcher: Unable to create process using '"c:\users\admin ...

  2. java JSON 和 Object 相互转换

    1.导入 jackson jar <dependency> <groupId>com.fasterxml.jackson.core</groupId> <ar ...

  3. b.WHERE使用中多行子查询(适用于in,any,all条件)

    b.多行子查询(适用于in,any,all条件)   //查询与SCOTT和MARTIN在同一个部门的同事的编号和名称   select empno,ename   from emp   where ...

  4. java--web学习总结<转>

    http://www.cnblogs.com/xdp-gacl/p/3729033.html

  5. Nodejs RESTFul架构实践之api篇(转)

    why token based auth? 此段摘自 http://zhuanlan.zhihu.com/FrontendMagazine/19920223 英文原文 http://code.tuts ...

  6. .NET开源项目一览

  7. [Angular] Handle HTTP Errors in Angular with HttpErrorResponse interface

    When communicating with some backend API, data travels over the network using the HTTP protocol. As ...

  8. UVA 1329 Corporative Network【并查集】

    题目链接: https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_proble ...

  9. Go语言核心之美 1.1-命名篇

    命名篇 1.Go的函数.变量.常量.自己定义类型.包(Package)的命名方式遵循以下规则: 1)首字符能够是随意的Unicode字符或者下划线 2)剩余字符能够是Unicode字符.下划线.数字 ...

  10. &quot;浪潮杯&quot;第六届ACM山东省省赛山科场总结

    从空间拷过来的.尽管已经过去一个月了.记忆犹新 也算是又一次拾起这个blog Just begin 看着一群群大牛还有队友男神的省赛总结都出了 我最终也耐不住寂寞 来做个流水账抒抒情好了 第一次省赛 ...