hdu 1568关于斐波那契数列的公式及其思维技巧
先看对数的性质,loga(b^c)=c*loga(b),loga(b*c)=loga(b)+loga(c);
假设给出一个数10234432,那么log10(10234432)=log10(1.0234432*10^7)=log10(1.0234432)+7; log10(1.0234432)就是log10(10234432)的小数部分. log10(1.0234432)=0.010063744
10^0.010063744=1.023443198
那么要取几位就很明显了吧~
先取对数(对10取),然后得到结果的小数部分bit,pow(10.0,bit)以后如果答案还是<1000那么就一直乘10。
注意偶先处理了0~20项是为了方便处理~ 这题要利用到数列的公式:an=(1/√5) * [((1+√5)/2)^n-((1-√5)/2)^n](n=1,2,3.....) 取完对数 log10(an)=-0.5*log10(5.0)+((double)n)*log(f)/log(10.0)+log10(1-((1-√5)/(1+√5))^n)其中f=(sqrt(5.0)+1.0)/2.0;
log10(1-((1-√5)/(1+√5))^n)->0
所以可以写成log10(an)=-0.5*log10(5.0)+((double)n)*log(f)/log(10.0);
最后取其小数部分。 #include<iostream>
#include<cmath>
using namespace std;
int fac[21]={0,1,1};
const double f=(sqrt(5.0)+1.0)/2.0;
int main()
{
double bit;
int n,i;
for(i=3;i<=20;i++)fac[i]=fac[i-1]+fac[i-2];//求前20项
while(cin>>n)
{
if(n<=20)
{
cout<<fac[n]<<endl;
continue;
}
bit=-0.5*log(5.0)/log(10.0)+((double)n)*log(f)/log(10.0);//忽略最后一项无穷小
bit=bit-floor(bit);
bit=pow(10.0,bit);
while(bit<1000)bit=bit*10.0;
printf("%d\n",(int)bit);
}
return 0;
}
hdu 1568关于斐波那契数列的公式及其思维技巧的更多相关文章
- HDU 1316 (斐波那契数列,大数相加,大数比较大小)
题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=1316 Recall the definition of the Fibonacci numbers: ...
- hdu 4549 M斐波那契数列(快速幂 矩阵快速幂 费马小定理)
题目链接http://acm.hdu.edu.cn/showproblem.php?pid=4549: 题目是中文的很容易理解吧.可一开始我把题目看错了,这毛病哈哈. 一开始我看错题时,就用了一个快速 ...
- HDU 5451 广义斐波那契数列
这道题目可以先转化: 令f(1) = 5+2√6 f(2) = f(1)*(5+2√6) ... f(n) = f(n-1)*(5+2√6) f(n) = f(n-1)*(10-(5-2√6)) = ...
- [HDU 4549] M斐波那契数列
M斐波那契数列 Time Limit: 3000/1000 MS (Java/Others) Memory Limit: 65535/32768 K (Java/Others)Total Sub ...
- HDU 4549 M斐波那契数列(矩阵快速幂)
题目链接:M斐波那契数列 题意:$F[0]=a,F[1]=b,F[n]=F[n-1]*F[n-2]$.给定$a,b,n$,求$F[n]$. 题解:暴力打表后发现$ F[n]=a^{fib(n-1)} ...
- hdu 4549 M斐波那契数列 矩阵快速幂+欧拉定理
M斐波那契数列 Time Limit: 3000/1000 MS (Java/Others) Memory Limit: 65535/32768 K (Java/Others) Problem ...
- HDU 5914 Triangle 斐波纳契数列 && 二进制切金条
HDU5914 题目链接 题意:有n根长度从1到n的木棒,问最少拿走多少根,使得剩下的木棒无论怎样都不能构成三角形. 题解:斐波纳契数列,a+b=c恰好不能构成三角形,暴力就好,推一下也可以. #in ...
- HDU 4549 M斐波那契数列(矩阵快速幂+费马小定理)
M斐波那契数列 Time Limit : 3000/1000ms (Java/Other) Memory Limit : 65535/32768K (Java/Other) Total Submi ...
- hdu 4549 M斐波那契数列(矩阵高速幂,高速幂降幂)
http://acm.hdu.edu.cn/showproblem.php?pid=4549 f[0] = a^1*b^0%p,f[1] = a^0*b^1%p,f[2] = a^1*b^1%p... ...
随机推荐
- C#操作INI文件(明天陪你看海)
C#操作INI文件 在很多的程序中,我们都会看到有以.ini为后缀名的文件,这个文件可以很方便的对程序配置的一些信息进行设置和读取,比如说我们在做一个程序后台登陆的时候,需要自动登录或者是远程配置数据 ...
- 91. ExtJS获取父子、兄弟容器元素方法
转自:https://blog.csdn.net/u014745818/article/details/44957341 1 1.当前对象的父对象(上级对象) this.ownerCt: 2.当前对象 ...
- php 关于使用七牛云存储
1.首先注册七牛云存储账号 http://www.qiniu.com/ 2.获得密钥 3.仔细查看文档 http://developer.qiniu.com/docs/v6/sdk/php-sdk.h ...
- Kettle环境变量配置
KETTLE_DIR=安装目录 KETTLE_HOME=安装目录 安装目录比如:D:\Kettle\pdi-ce-6.0.0.0-353\data-integration
- [BZOJ1601] 灌水
难点:找到正确方式建图 知识点:Kruskal 分析:这种题肯定要把点权转换到边权上,但肯定无法搞到和其他点相连的边上,怎么办呢?那就再造一个点呗,这个“超级点”和所有点相连,且边权=点权,于是就可以 ...
- [转]SQLServe 存储表结构的几个系统表
1. 获取表的基本字段属性 获取SqlServer中表结构 SELECT syscolumns.name,systypes.name,syscolumns.isnullable, syscolumns ...
- Android Studio连接夜神模拟器
运行-cmd,进入夜神模拟器安装目录,进入目录下的bin 执行Nox_adb.exe connect 127.0.0.1:62001命令,connect左右都有空格. 执行命令后就可以连接到夜神模拟器 ...
- Java code List Map, HashMap, JSON parser snippet
package com.newegg.ec.solr.eventsalestoreservice.tuple; import kafka.message.MessageAndMetadata; pub ...
- CSS框架Bootstrap
作为一个软件开发人员,经常接触和使用框架是再平常的事情不过了.但是这些框架基本都是和语言相关的,比如WEB框架SpringMVC,JavaEE框架Spring,ORM框架Hibernate,还有Jav ...
- texi格式文件的读取
使用texi2html可以将texi格式的文件转换成html格式的文件. sudo apt-get install texi2html 在对应目录下 texi2html filename.texi 或 ...