[bzoj2588][Spoj10628]Count on a tree_主席树
Count on a tree bzoj-2588 Spoj-10628
题目大意:给定一棵n个点的树,m次查询。查询路径上k小值。
注释:$1\le n,m\le 10^5$。
想法:好像更博顺序有一些问题... ...
root[i]表示以i为根的主席树根
对于查询的两个点x,y,我们只需要查询
root[x]+root[y]-root[lca(x,y)]-root[fa[lca(x,y)]]的主席树即可。
具体地,每个节点的权值线段树维护的是当前结点到根的路径上这些点权值的权值线段树。
最后,附上丑陋的代码... ...
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <map>
using namespace std;
int ans,tot,cnt,anc,n,m,q,x,y,z,d[100010],v[100010],h[100010],l[3000010],r[3000010],to[200010],head[100010],next[200010],sum[3000010],root[100010],f[100010][20];
map<int,int>b;
void add(int x,int y)
{
tot++;
next[tot]=head[x];
head[x]=tot;
to[tot]=y;
}
int lca(int x,int y)
{
if(d[x]<d[y])
{
swap(x,y);
}
int dep=d[x]-d[y];
for(int i=0;i<=19;i++)
{
if((dep&(1<<i))!=0)
{
x=f[x][i];
}
}
if(x==y)
{
return x;
}
for(int i=19;i>=0;i--)
{
if(f[x][i]!=f[y][i])
{
x=f[x][i];
y=f[y][i];
}
}
return f[x][0];
}
int updata(int pre,int L,int R,int k)
{
int mid=(L+R)>>1;
int rt=++cnt;
l[rt]=l[pre];
r[rt]=r[pre];
sum[rt]=sum[pre]+1;
if(L==R)
{
return rt;
}
else
{
if(k<=mid)
{
l[rt]=updata(l[pre],L,mid,k);
}
else
{
r[rt]=updata(r[pre],mid+1,R,k);
}
}
return rt;
}
int query(int x,int y,int anc,int fa,int L,int R,int k)
{
int mid=(L+R)>>1;
if(L==R)
{
return b[L];
}
int num=sum[l[x]]+sum[l[y]]-sum[l[anc]]-sum[l[fa]];
if(num>=k)
{
return query(l[x],l[y],l[anc],l[fa],L,mid,k);
}
else
{
return query(r[x],r[y],r[anc],r[fa],mid+1,R,k-num);
}
}
void dfs(int x,int fa)
{
d[x]=d[fa]+1;
int k=lower_bound(h+1,h+1+m,v[x])-h;
b[k]=v[x];
root[x]=updata(root[fa],1,n,k);
for(int i=1;i<=19;i++)
{
f[x][i]=f[f[x][i-1]][i-1];
}
for(int i=head[x];i;i=next[i])
{
if(to[i]!=fa)
{
f[to[i]][0]=x;
dfs(to[i],x);
}
}
}
int main()
{
scanf("%d%d",&n,&q);
for(int i=1;i<=n;i++)
{
scanf("%d",&v[i]);
h[i]=v[i];
}
sort(h+1,h+1+n);
m=unique(h+1,h+1+n)-h-1;
for(int i=1;i<n;i++)
{
scanf("%d%d",&x,&y);
add(x,y);
add(y,x);
}
dfs(1,0);
for(int i=1;i<=q;i++)
{
scanf("%d%d%d",&x,&y,&z);
x=x^ans;
anc=lca(x,y);
ans=query(root[x],root[y],root[anc],root[f[anc][0]],1,n,z);
printf("%d\n",ans);
}
}
小结:在树上的主席树就是nb... ...
[bzoj2588][Spoj10628]Count on a tree_主席树的更多相关文章
- 【BZOJ-2588】Count on a tree 主席树 + 倍增
2588: Spoj 10628. Count on a tree Time Limit: 12 Sec Memory Limit: 128 MBSubmit: 3749 Solved: 873[ ...
- 【bzoj2588】Count on a tree 主席树
这题给人开了个新思路. 原本构造一个序列的主席树,是这个位置用上个位置的信息来省空间,树上的主席树是继承父亲的信息来省空间. 此题若带修改怎么办? 若对某个点的权值做修改,则这个点的子树都会受影响,想 ...
- BZOJ2588 SPOJ10628 Count on a tree 【主席树】
BZOJ2588 Count on a tree 题目描述 给定一棵N个节点的树,每个点有一个权值,对于M个询问(u,v,k),你需要回答u xor lastans和v这两个节点间第K小的点权.其中l ...
- 洛谷P2633/bzoj2588 Count on a tree (主席树)
洛谷P2633/bzoj2588 Count on a tree 题目描述 给定一棵N个节点的树,每个点有一个权值,对于M个询问(u,v,k),你需要回答u xor lastans和v这两个节点间第K ...
- 【BZOJ2588】Spoj 10628. Count on a tree 主席树+LCA
[BZOJ2588]Spoj 10628. Count on a tree Description 给定一棵N个节点的树,每个点有一个权值,对于M个询问(u,v,k),你需要回答u xor lasta ...
- [bzoj2588][count on a tree] (主席树+lca)
Description 给定一棵N个节点的树,每个点有一个权值,对于M个询问(u,v,k),你需要回答u xor lastans和v这两个节点间第K小的点权.其中lastans是上一个询问的答案,初始 ...
- BZOJ2588:Count on a tree(主席树)
Description 给定一棵N个节点的树,每个点有一个权值,对于M个询问(u,v,k),你需要回答u xor lastans和v这两个节点间第K小的点权.其中lastans是上一个询问的答案,初始 ...
- 洛谷P2633 Count on a tree(主席树上树)
题目描述 给定一棵N个节点的树,每个点有一个权值,对于M个询问(u,v,k),你需要回答u xor lastans和v这两个节点间第K小的点权.其中lastans是上一个询问的答案,初始为0,即第一个 ...
- P2633 Count on a tree(主席树)
题目描述 给定一棵N个节点的树,每个点有一个权值,对于M个询问(u,v,k),你需要回答u xor lastans和v这两个节点间第K小的点权.其中lastans是上一个询问的答案,初始为0,即第一个 ...
随机推荐
- elasticsearch _field_stats 源码分析
_field_stats 实现的功能:https://www.elastic.co/guide/en/elasticsearch/reference/5.6/search-field-stats.ht ...
- splunk的bucket组织目录——时间序列,按照时间来组织目录
splunk的bucket组织目录:db_1481515116_1480695302_0db_1481537316_1481532688_1db_1481547598_1481539988_2db_1 ...
- BNUOJ ->Borrow Classroom(LCA)
B. Borrow Classroom Time Limit: 5000ms Memory Limit: 262144KB 每年的BNU校赛都会有两次赛前培训,为此就需要去借教室,由于SK同学忙于出题 ...
- 【POJ 2442】 Sequence
[题目链接] http://poj.org/problem?id=2442 [算法] 堆 [代码] #include <algorithm> #include <bitset> ...
- B1816 扑克牌 二分答案 + 贪心
这个题我一开始想到了二分答案,但是去写了另一个算法,用优先队列直接模拟,最后GG了...因为我没考虑每个套牌只能有一个joker...尴尬. 后来二分答案,然后暴力验证就行了. 题干: Descrip ...
- bzoj 4198 [ Noi 2015 ] 荷马史诗 —— 哈夫曼编码(k叉哈夫曼树)
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4198 第一次写哈夫曼树!看了很多博客. 哈夫曼树 & 哈夫曼编码:https://w ...
- C# Task 源代码阅读(2)
上篇已经讲到Task 的默认的TaskScheduler 为ThreadPoolTaskScheduler. 这时我们回到原来的task 的start方法,在代码最后,调用了 ScheduleAndS ...
- Principal Component Analysis ---- PRML读书笔记
To summarize, principal component analysis involves evaluating the mean x and the covariance matrix ...
- java jdk 管理工具
官网:http://www.jenv.be/ 安装: Linux / OS X $ git clone https://github.com/gcuisinier/jenv.git ~/.jenv M ...
- (Go)10.流程控制示例
package main import ( "math/rand" "fmt" ) func main() { //var n int n := rand.In ...