【题目链接】

http://poj.org/problem?id=1830

【算法】

列出异或方程组,用高斯消元求解

【代码】

#include <algorithm>
#include <bitset>
#include <cctype>
#include <cerrno>
#include <clocale>
#include <cmath>
#include <complex>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <ctime>
#include <deque>
#include <exception>
#include <fstream>
#include <functional>
#include <limits>
#include <list>
#include <map>
#include <iomanip>
#include <ios>
#include <iosfwd>
#include <iostream>
#include <istream>
#include <ostream>
#include <queue>
#include <set>
#include <sstream>
#include <stdexcept>
#include <streambuf>
#include <string>
#include <utility>
#include <vector>
#include <cwchar>
#include <cwctype>
#include <stack>
#include <limits.h>
using namespace std; int i,j,k,T,n,x,y,ans;
int a[]; int main()
{ scanf("%d",&T);
while (T--)
{
scanf("%d",&n);
for (i = ; i <= n; i++) scanf("%d",&a[i]);
for (i = ; i <= n; i++)
{
scanf("%d",&x);
a[i] ^= x;
a[i] |= ( << i);
}
while (scanf("%d%d",&x,&y) && x && y) a[y] |= ( << x);
ans = ;
for (i = ; i <= n; i++)
{
for (j = i + ; j <= n; j++)
{
if (a[j] > a[i])
swap(a[i],a[j]);
}
if (a[i] == )
{
ans = << (n - i + );
break;
}
if (a[i] == )
{
ans = ;
break;
}
for (k = n; k; k--)
{
if (a[i] & ( << k))
{
for (j = ; j <= n; j++)
{
if (i != j && (a[j] & ( << k)))
a[j] ^= a[i];
}
break;
}
}
}
if (!ans) printf("Oh,it's impossible~!!\n");
else printf("%d\n",ans);
} return ; }

【POJ 1830】 开关问题的更多相关文章

  1. POJ 1830 开关问题(高斯消元)题解

    思路:乍一看好像和线性代数没什么关系.我们用一个数组B表示第i个位置的灯变了没有,然后假设我用u[i] = 1表示动开关i,mp[i][j] = 1表示动了i之后j也会跟着动,那么第i个开关的最终状态 ...

  2. POJ 1830 开关问题 【01矩阵 高斯消元】

    任意门:http://poj.org/problem?id=1830 开关问题 Time Limit: 1000MS Memory Limit: 30000K Total Submissions: 1 ...

  3. POJ 1830 开关问题(高斯消元求解的情况)

    开关问题 Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 8714   Accepted: 3424 Description ...

  4. POJ 1830 开关问题 高斯消元,自由变量个数

    http://poj.org/problem?id=1830 如果开关s1操作一次,则会有s1(记住自己也会变).和s1连接的开关都会做一次操作. 那么设矩阵a[i][j]表示按下了开关j,开关i会被 ...

  5. poj 1830 开关问题

    开关问题 题意:给n(0 < n < 29)开关的初始和最终状态(01表示),以及开关之间的关联关系(关联关系是单向的输入a b表示a->b),问有几种方式得到最终的状态.否则输出字 ...

  6. POJ 1830 开关问题(Gauss 消元)

    开关问题 Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 7726   Accepted: 3032 Description ...

  7. POJ 1830 开关问题 (高斯消元)

    题目链接 题意:中文题,和上篇博客POJ 1222是一类题. 题解:如果有解,解的个数便是2^(自由变元个数),因为每个变元都有两种选择. 代码: #include <iostream> ...

  8. POJ 1830.开关问题(高斯消元)

    题目链接 Solutin: 将每个开关使用的情况当成未知数,如果开关i能影响到开关j,那么系数矩阵A[j][i]的系数为1. 每个开关增广矩阵的值是开关k的初状态异或开关k的目标状态,这个应该很容易想 ...

  9. POJ 1830 开关问题 [高斯消元XOR]

    和上两题一样 Input 输入第一行有一个数K,表示以下有K组测试数据. 每组测试数据的格式如下: 第一行 一个数N(0 < N < 29) 第二行 N个0或者1的数,表示开始时N个开关状 ...

  10. POJ.1830.开关问题(高斯消元 异或方程组)

    题目链接 显然我们需要使每个i满足\[( ∑_{j} X[j]*A[i][j] ) mod\ 2 = B[i]\] 求这个方程自由元Xi的个数ans,那么方案数便是\(2^{ans}\) %2可以用^ ...

随机推荐

  1. vue.js $set的使用 数组

    [javascript] view plain copy <!DOCTYPE html> <html lang="en"> <head> < ...

  2. HTML5标签构成

    一个HTML5文件是由一些列的元素和标签组成的.元素是HTML5文件的重要组成部分,例如title(文件标题).img(图像)及table(表格)等.元素名不区分大小写,而HTML5用标签来规定元素的 ...

  3. 使用T-sql建库建表建约束

    为什么要使用sql语句建库建表? 现在假设这样一个场景,公司的项目经过测试没问题后需要在客户的实际环境中进行演示,那就需要对数据进行移植,现在问题来了:客户的数据库版本和公司开发阶段使用的数据库不兼容 ...

  4. SQL Server 检测到基于一致性的逻辑 I/O 错误 pageid 不正确(应为 1:1772,但实际为 0:0)。在文件 'D:\Program Files\Microsoft SQL Ser

    SQL Server 检测到基于一致性的逻辑 I/O 错误 pageid 不正确(应为 1:1772,但实际为 0:0).在文件 'D:\Program Files\Microsoft SQL Ser ...

  5. 2013款MacBook Air装Windows7单系统

    经过两天的摸索,查找无数资料终于把2013款的MacBook Air装上了WIN 7,虽然网上有很多的资料但是都不是我想要的,第一个我的是2013款的MacBook Air,跟原来2012 11款Ma ...

  6. Cell期刊论文:为什么计算机人脸识别注定超越人类?(祖母论与还原论之争)

    终于找到ML日报的微信链接,抄之...................................... 请拜访原文链接:[祖母论与还原论之争]为什么计算机人脸识别注定超越人类?评价:       ...

  7. NSURLCredential 代表认证结果证书?

    NSURLCredential 代表认证结果证书?

  8. 【转载】java文件路径问题及getResource和getClassLoader().getResource的区别

    版权声明:本文为博主原创文章,未经博主允许不得转载. https://blog.csdn.net/u012572955/article/details/52880520我们经常在java的io操作中读 ...

  9. Python笔记(29)----进程

    目录: 一.进程 多任务的概念 创建子进程----fork[Linux] 全局变量在多个进程中不共享 多次fork() 创建进程----multiprocessing[windows] 二.线程 一. ...

  10. 5.win上安装ES

    安装步骤如下: 1.安装JDK 至少1.8.0_73以上版本,使用 java -version 这个命令进行查看java的版本 2.下载和解压缩Elasticsearch安装包, 解压后目录结构: 3 ...