Selective Search for Object Recognition

是J.R.R. Uijlings发表在2012 IJCV上的一篇文章。主要介绍了选择性搜索(Selective Search)的方法。选择性搜索综合了蛮力搜索(exhaustive search)和分割(segmentation)的方法。选择性搜索意在找出可能的目标位置来进行物体的识别。与传统的单一策略相比,选择性搜索提供了多种策略,并且与蛮力搜索相比,大幅度降低搜索空间,让我们可以用到更好的识别算法

现实中,很多图像是包含多类别,多层次的信息的,如上图。所以我们要用到多层分割的方法,并且要用多种分割策略。

(一)选择性搜索(selectivesearch)

1.      分层分组:区域包含的信息比像素多,所以我们的特征是基于区域的。为了得到一些小的初始化的区域,用的是[13]中区域划分的方法。

[13]具体看http://blog.sciencenet.cn/blog-261330-722530.html

然后我们的分层分组算法如下:

我们首先用[13]得到一些初始化的区域R={r1,….rn}

计算出每个相邻区域的相似性s(ri,rj)

1.      找出相似性最大的区域max(S)={ri,rj}

2.      合并rt=ri∪rj

3.      从S集合中,移走所有与ri,rj相关的数据

4.      计算新集合rt与所有与它相邻区域的相似性s(rt,r*)

5.      R=R∪rt

直到S集合为空,重复1~5。

2.      各种分割策略

关于s(ri,rj)的计算,我们有多种方法,但要注意的是这些相似性特征应该是可以传递的。如当我们合并ri和rj成rt时,rt的特征可以由ri和rj直接计算,而不需要根据他们每个像素点的值进行重新计算。

(1)      多种颜色模型(color model):文章共比较了8种颜色模型

(2)      相似性准则的补充(complementary similarity measure)

共介绍了四种准则,每一种都是可以快速计算的。

Scolor(ri,rj)用于计算ri,rj的相似性。对每个区域,我们都可以得到一个一维的颜色分布直方图。直方图一共有25个区间,区域i的颜色分布直方图为

如果有3个颜色通道,则n=75。还要用L1 norm来进行归一化。

当i和j合并成t,区域t的颜色分布直方图可以用下面式子进行计算:

t 的size用下面式子计算:

Stexture(ri,rj)我们可以用到SIFT(局部特征描述子)

SIFT介绍见:http://www.cnblogs.com/saintbird/archive/2008/08/20/1271943.html

我们取8个方向,方差为1的高斯滤波器,10个空间的直方图来描述。

如果有3个颜色通道,n=240=8*3*10,同理得到区域i的纹理直方图要用L1norm归一化。

同理,纹理的传递性也可以用(2)式解决。

Ssize (ri,rj)鼓励小的区域尽早合并。

size(im)表示整个图片的像素数目。

Sfill (ri,rj)鼓励有相交或者有包含关系的区域先合并。

BBij指包含i,j区域的最小外包区域。

在这篇文章中,我们用到如下计算相似性:

3.      初始化区域

用[13]得到的初始化区域可以根据阈值k得到不同的结果。

(二)用选择性搜索进行识别(object recognition using selective search)

1.  训练数据的产生

在训练数据上,标注出目标区域,如上图中绿色高亮区域的奶牛,将这些标注区域作为正样本。使用selective search产生目标假设区域(也就是若干个分割区域)。将分割区域的外接矩形和目标标注区域的重叠度在20%~50%之间的区域标注为负样本。我们规定负样本之间不能有超过70%的重叠。

有了正样本和负样本之后,我们用的特征提取方法是:

color-SIFT descriptors[32]+a finer spatialpyramid division[18]

然后进行SVM训练。

2.   迭代训练

采用迭代训练方式,在每次训练完成之后,挑选出false positives样本,并将其加入到训练样本中,其实这便是增加了困难样本数。使用其进行模型训练,直到收敛(精度不在产生变化)。

(三)评价(evaluation)

文章给出了一些判断标准。

ABO(Average Best Overlap)

G应该是物体所在的目标区域。L是selective search算法算出的候选区域。找出Selective Search算法中与该类目标区域覆盖最多的区域。覆盖率由(8)式计算。然后再除以该类的数目。

MABO(Mean Average Best Overlap)就是计算每一类的ABO值,再求均值。

之后的实验都是基于这两个评判标准的,详细结果看论文。

本文提到的Reference:

[13] P. F. Felzenszwalb and D. P.Huttenlocher. Efficient Graph-Based Image Segmentation. IJCV, 59:167–181, 2004.

[18] S. Lazebnik, C. Schmid, and J. Ponce.Beyond bags of features: Spatial pyramid matching for recognizing natural scenecategories. In CVPR, 2006.

[32] K. E. A. van de Sande, T. Gevers, andC. G. M. Snoek. Evaluating color descriptors for object and scenerecognition.TPAMI, 32:1582–1596, 2010.


代码下载地址:http://pan.baidu.com/s/1sjOLbat

【计算机视觉】Selective Search for Object Recognition论文阅读2的更多相关文章

  1. 【计算机视觉】Selective Search for Object Recognition论文阅读3

    Selective Search for Object Recoginition surgewong@gmail.com http://blog.csdn.net/surgewong       在前 ...

  2. 【计算机视觉】Selective Search for Object Recognition论文阅读1

    Selective Search for Object Recognition 作者: J. R. R. Uijlings, K. E. A. van de Sande, T. Gevers, A. ...

  3. Selective Search for Object Recognition 论文笔记【图片目标分割】

    这篇笔记,仅仅是对选择性算法介绍一下原理性知识,不对公式进行推倒. 前言: 这篇论文介绍的是,如果快速的找到的可能是物体目标的区域,不像使用传统的滑动窗口来暴力进行区域识别.这里是使用算法从多个维度对 ...

  4. 论文笔记:Selective Search for Object Recognition

    与 Selective Search 初次见面是在著名的物体检测论文 「Rich feature hierarchies for accurate object detection and seman ...

  5. [论文理解]Selective Search for Object Recognition

    Selective Search for Object Recognition 简介 Selective Search是现在目标检测里面非常常用的方法,rcnn.frcnn等就是通过selective ...

  6. 目标检测--Selective Search for Object Recognition(IJCV, 2013)

    Selective Search for Object Recognition 作者: J. R. R. Uijlings, K. E. A. van de Sande, T. Gevers, A. ...

  7. Selective Search for Object Recognition

    http://blog.csdn.net/charwing/article/details/27180421 Selective Search for Object Recognition 是J.R. ...

  8. Notes on 'Selective Search For Object Recognition'

    UijlingsIJCV2013, Selective Search For Object Recognition code 算法思想 利用分割算法将图片细分成很多region, 或超像素. 在这个基 ...

  9. 机器学习:Selective Search for Object Recognition

    今天介绍 IJCV 2013 年的一篇文章,Selective Search for Object Recognition,这个是后面著名的DL架构 R-CNN 的基础,后续介绍 R-CNN 的时候, ...

随机推荐

  1. Linux下安装mysql(离线安装和在线安装)

    一:在线安装mysql 1.首先检测一下,mysql之前有没有被安装 命令:rpm -qa | grep mysql 2.删除mysql的命令: rpm -e --nodeps `rpm -qa | ...

  2. PostgreSQL 不要使用kill -9 杀 Postgresq 用户进程

    转载:http://francs3.blog.163.com/blog/static/4057672720109854858308/ Postgresql 8.3.3 今天应用反映数据库很慢,有些SQ ...

  3. Codevs 1227 方格取数 2(费用流)

    1227 方格取数 2 时间限制: 1 s 空间限制: 128000 KB 题目等级 : 大师 Master 查看运行结果 题目描述 Description 给出一个n*n的矩阵,每一格有一个非负整数 ...

  4. TensorFlow(十四):谷歌图像识别网络inception-v3下载与查看结构

    上代码: import tensorflow as tf import os import tarfile import requests #inception模型下载地址 inception_pre ...

  5. angular2事件触发

    输入框输入过程触发Select()方法. <input type="text" name="code" [(ngModel)]="code&qu ...

  6. 扩展kmp学习笔记

    kmp没写过,扩展kmp没学过可还行. 两个愿望,一次满足 (该博客仅用于防止自己忘记,不保证初学者能看懂我在瞎bb什么qwq) 用途 对于串\(s1,s2\),可以求出\(s2\)与\(s1\)的每 ...

  7. mongodb的权限操作

    一.开启权限认证 1.windows下的mongodb开启权限认证 C:\Users\Administrator>sc delete MongoDB //原来创建的服务如果没有开启 则删除 [S ...

  8. As I Began to Love Myself

    As I Began to Love Myself: Charlie Chaplin on his 70th birthday As I began to love myself I found th ...

  9. vue pc element-ui class

    按需引入element-ui npm install babel-plugin-component -D   先安装这个 然后在babelrc中配置: 在plugins中加入红色框的那一部分 [ &q ...

  10. Arts打卡第10周

    Algorithm.主要是为了编程训练和学习. 每周至少做一个 leetcode 的算法题(先从Easy开始,然后再Medium,最后才Hard). 进行编程训练,如果不训练你看再多的算法书,你依然不 ...