2019南昌网络赛 I. Yukino With Subinterval 树状数组套线段树
I. Yukino With Subinterval
题目链接:
Problem Descripe
Yukino has an array \(a_1, a_2 \cdots a_n\). As a tsundere girl, Yukino is fond of studying subinterval.
Today, she gives you four integers $l, r, x, y $, and she is looking for how many different subintervals \([L, R]\) are in the interval \([l, r]\)that meet the following restraints:
- \(a_L =a_{L+1} =\cdots=a_R\), and for any $ i\in [L,R], x \le a_i \le y$.
- The length of such a subinterval should be maximum under the first restraint.
Note that two subintervals \([L_1,R_1] , [L_2,R_2]\) are different if and only if at least one of the following formulas is true:
- \(L1 \cancel= L2\)
- \(R1 \cancel= R2\)
Yukino, at the same time, likes making tricks. She will choose two integers \(pos,v\), and she will change \(a_{pos}\) to \(v\).
Now, you need to handle the following types of queries:
- \(1 \ pos \ v\) : change \(a_{pos}\) to $v $
- \(2\) \(l \ r \ x \ y\): print the number of legal subintervals in the interval \([l, r]\)
Input
The first line of the input contains two integers \(n, m (1 \le n, m \le 2 \times 10^5)\)– the numbers of the array and the numbers of queries respectively.
The second line of the input contains nnn integers \(a_i (1 \le a_i \le n)\).
For the next mmm line, each containing a query in one of the following queries:
- \(1\) \(pos\) \(v \ (1 \le pos, v \le n)\): change \(a_{pos}\) to \(v\)
- \(2 \ l \ r \ x \ y (1 \le l \le r \le n) (1 \le x \le y \le n)\): print the number of legal subintervals in the interval \([l,r]\)
Output
For each query of the second type, you should output the number of legal subintervals in the interval \([l, r]\).
样例输入
6 3
3 3 1 5 6 5
2 2 3 4 5
1 3 2
2 1 6 1 5
样例输出
0
4
样例解释
For the first operations, there are \(3\) different subintervals \(([2, 2],[3, 3],[2,3])\)in the interval \([2, 3]\), but none of them meets all the restraints.
For the third operations, the legal subintervals in interval \([1, 6]\) are: \([1, 2], [3, 3], [4, 4], [6, 6]\)
Notes that although subintervals \([1,1]\) and \([2,2]\) also meet the first restraint, we can extend them to subinterval \([1, 2]\). So the length of them is not long enough, which against the second one.
题意
给你一个序列,提供两种操作
- \(1\) \(pos\) \(v \ (1 \le pos, v \le n)\): 将 \(a_{pos}\) 改为 \(v\)
- \(2 \ l \ r \ x \ y (1 \le l \le r \le n) (1 \le x \le y \le n)\): 输出\([l,r]\) 中权值\(\in [x,y]\) 的个数。特别注意一段连续相同的数只算一次
题解
树套树\(n\)年前打的,早就忘了,于是直接跳过,其实这就是一道可修改区间第k大
模板题吧,如果不会的可以去luogu
学习一下。
模板传送门:https://www.luogu.org/problem/P3380
这题唯一要解决的就是怎么处理连续段只算一次的问题了。我是树状数组套线段树,于是如果\(a[i]=a[i-1]\)那么就不处理。
还有几个需要注意的地方
- 如果改变了\(a[i]\)的值,记得更改\(a[i-1]\)和\(a[i+1]\)
- 对于区间\([l,r]\),记得特判\(a[l]\),可能\(a[l]=a[l-1]\),但是这时也要算
代码
#include<bits/stdc++.h>
using namespace std;
#define ll long long
#define INF 0x7f7f7f7f
#define N 200050
template<typename T>void read(T&x)
{
ll k=0; char c=getchar();
x=0;
while(!isdigit(c)&&c!=EOF)k^=c=='-',c=getchar();
if (c==EOF)exit(0);
while(isdigit(c))x=x*10+c-'0',c=getchar();
x=k?-x:x;
}
void read_char(char &c)
{while(!isalpha(c=getchar())&&c!=EOF);}
int n,m,treeNode;
int a[N],ql[20],qr[20];
struct Tree{int ls,rs,sum;}tr[N*150];
void update(int&x,int p,int tt,int l,int r)
{
if (x==0)x=++treeNode;
tr[x].sum+=tt;
if (l==r)return;
int mid=(l+r)>>1;
if (p<=mid)update(tr[x].ls,p,tt,l,mid);
else update(tr[x].rs,p,tt,mid+1,r);
}
void change(int x,int p,int tt)
{while(x<=n)update(x,p,tt,1,n+1),x+=x&-x;}
void getRt(int l,int r)
{
ql[0]=qr[0]=0;
while(l)ql[++ql[0]]=l,l-=l&-l;
while(r)qr[++qr[0]]=r,r-=r&-r;
}
int getSum()
{
int ans=0;
for(int i=1;i<=ql[0];i++)ans-=tr[tr[ql[i]].ls].sum;
for(int i=1;i<=qr[0];i++)ans+=tr[tr[qr[i]].ls].sum;
return ans;
}
void move_L()
{
for(int i=1;i<=ql[0];i++)ql[i]=tr[ql[i]].ls;
for(int i=1;i<=qr[0];i++)qr[i]=tr[qr[i]].ls;
}
void move_R()
{
for(int i=1;i<=ql[0];i++)ql[i]=tr[ql[i]].rs;
for(int i=1;i<=qr[0];i++)qr[i]=tr[qr[i]].rs;
}
int _Rank(int p,int l,int r)
{
if (l==r)return 0;
int mid=(l+r)>>1,tp=getSum();
if (p<mid){move_L();return _Rank(p,l,mid);}
move_R(); return tp+_Rank(p,mid+1,r);
}
int Rank(int l,int r,int k)
{
getRt(l-1,r);
return _Rank(k-1,1,n+1);
}
void work()
{
int id,pos,v,l,r,x,y;
read(n); read(m);
treeNode=n;
for(int i=1;i<=n;i++)read(a[i]);
for(int i=1;i<=n;i++)if (a[i]!=a[i-1])change(i,a[i],1);
for(int i=1;i<=m;i++)
{
read(id);
if (id==1)
{
read(pos); read(v);
if (a[pos]!=a[pos-1])change(pos,a[pos],-1);
if (v!=a[pos-1])change(pos,v,1);
if (a[pos]==a[pos+1])change(pos+1,a[pos+1],1);
if (v==a[pos+1])change(pos+1,a[pos+1],-1);
a[pos]=v;
}
if (id==2)
{
read(l); read(r); read(x); read(y);
int ans=-Rank(l,r,x)+Rank(l,r,y+1);
if (a[l]==a[l-1]&&x<=a[l]&&a[l]<=y)ans++;
printf("%d\n",ans);
}
}
}
int main()
{
#ifndef ONLINE_JUDGE
freopen("aa.in","r",stdin);
#endif
work();
}
2019南昌网络赛 I. Yukino With Subinterval 树状数组套线段树的更多相关文章
- 2019南昌网络赛I:Yukino With Subinterval(CDQ) (树状数组套主席树)
题意:询问区间有多少个连续的段,而且这段的颜色在[L,R]才算贡献,每段贡献是1. 有单点修改和区间查询. 思路:46min交了第一发树套树,T了. 稍加优化多交几次就过了. 不难想到,除了L这个点, ...
- 2019南昌网络赛-I. Yukino With Subinterval 线段树套树状数组,CDQ分治
TMD...这题卡内存卡的真优秀... 所以以后还是别用主席树的写法...不然怎么死的都不知道... 树套树中,主席树方法开权值线段树...会造成空间的浪费...这道题内存卡的很紧... 由于树套树已 ...
- 2019 ICPC 南昌网络赛I:Yukino With Subinterval(CDQ分治)
Yukino With Subinterval Yukino has an array a_1, a_2 \cdots a_na1,a2⋯*a**n*. As a tsundere girl, Yuk ...
- HDU 5877 2016大连网络赛 Weak Pair(树状数组,线段树,动态开点,启发式合并,可持久化线段树)
Weak Pair Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 262144/262144 K (Java/Others) Tota ...
- 2019icpc徐州现场赛 H Yuuki and a problem (树状数组套主席树)
题意 2e5的数组,q个操作 1.将\(a[x]\)改为y 2.求下标l到r内所有的\(a[i]\)通过加法不能构成的最小的值 思路 通过二操作可以知道需要提取l到r内的值及其数量,而提取下标为l到r ...
- ACM-ICPC 2019南昌网络赛I题 Yukino With Subinterval
ACM-ICPC 2019南昌网络赛I题 Yukino With Subinterval 题目大意:给一个长度为n,值域为[1, n]的序列{a},要求支持m次操作: 单点修改 1 pos val 询 ...
- ACM-ICPC 2019南昌网络赛F题 Megumi With String
ACM-ICPC 南昌网络赛F题 Megumi With String 题目描述 给一个长度为\(l\)的字符串\(S\),和关于\(x\)的\(k\)次多项式\(G[x]\).当一个字符串\(str ...
- 计蒜客 1460.Ryuji doesn't want to study-树状数组 or 线段树 (ACM-ICPC 2018 徐州赛区网络预赛 H)
H.Ryuji doesn't want to study 27.34% 1000ms 262144K Ryuji is not a good student, and he doesn't wa ...
- 2019南昌网络赛 hello 2019
这道题和一道2017,2016的类似. A string t is called nice if a string “2017” occurs in t as a subsequence but a ...
随机推荐
- css 计算值函数
css有一些强大的函数: 1. calc 可以混合多种单位来计算 div { font-size: calc(100vw/5 + 1rem - 100px) } 2. max.min.clamp ma ...
- radio自带回显和默认选中
<input type="radio" name="state" <c:if test="${empty model.state || m ...
- LinkedBlockingQueue和ArrayBlockingQueue的异同
相同: 1.LinkedBlockingQueue和ArrayBlockingQueue都实现了BlockingQueue接口: 2.LinkedBlockingQueue和ArrayBlocking ...
- Java实现线程的三种方式和区别
Java实现线程的三种方式和区别 Java实现线程的三种方式: 继承Thread 实现Runnable接口 实现Callable接口 区别: 第一种方式继承Thread就不能继承其他类了,后面两种可以 ...
- 快速上手系列-C语言之指针篇(一)
快速上手系列-C语言之指针篇(一) 浊酒敬风尘 发布时间:18-06-2108:29 指针的灵活运用使得c语言更加强大,指针是C语言中十分重要的部分,可以说指针是C语言的灵魂.当然指针不是万能的,但没 ...
- office很抱歉遇到一些临时服务器问题
office2016登录很抱歉遇到一些临时服务器问题 主要问题:word不能进行发博客了.一直以为是cnblog服务器不稳定,今天才发现,word不能登录也就是不能联网. 查了原因,才知道是代理造 ...
- 【Java/JDBC】利用ResultSetMetaData从数据库的某表中获取字段信息并存到csv文件
代码下载:https://files.cnblogs.com/files/xiandedanteng/FindNotnullColumns20191102-2.rar 这篇还不够完善,请看更完善的续篇 ...
- JMeter-jp@gc - PerfMon Metrics Collector-CPU监控工具的配置及使用(win版本)
服务器端放这个 如果端口号被占用,默认报这个错: 如果默认的4444端口被占用的修改: C:\Users\Administrator>CD E:\E:\apache-jmeter-4.0\Ser ...
- 在HTML中直接使用onclick很不专业
原因 1.onclick添加的事件处理函数是在全局环境下执行的,这污染了全局环境,很容易产生意料不到的后果: 2.给很多DOM元素添加onclick事件,可能会影响网页的性能,毕竟网页需要的事件处理函 ...
- JAVA运维总结篇
写这篇文章主要目的是完成自己多年来运维JAVA应用的一个总结,相当于个人知识库,以后工作中遇到问题便于临时查阅并不断完善自己的知识体系. 上图,就知道Tomcat在JAVA容器界是多么重要. ...