HanLP-朴素贝叶斯分类预测缺陷
文章整理自 baiziyu 的知乎专栏,感兴趣的朋友可以去关注下这位大神的专栏,很多关于自然语言处理的文章写的很不错。昨天看到他的分享的两篇关于朴素贝叶斯分类预测的文章,整理了一下分享给给大家,文章已做部分修改!
朴素贝叶斯分类时,最好取对数变相乘为相加,防止预测结果溢出。可能出现的badcase就是明明训练语料X类目下没有词语t,而系统就将文本预测为X类目。解决方法就时改相乘为取对数相加。HanLP的朴素贝叶斯分类计算没有用对数相加的方法,而是直接用的概率相乘,很有可能溢出。
对上述内容做一些更正,HanLP的朴素贝叶斯是按照概率取对数相加做的。
看一下下边的代码
@Override
public double[] categorize(Document document) throws IllegalArgumentException, IllegalStateException
{
Integer category;
Integer feature;
Integer occurrences;
Double logprob;
double[] predictionScores = new double[model.catalog.length];
for (Map.Entry<Integer, Double> entry1 : model.logPriors.entrySet())
{
category = entry1.getKey();
logprob = entry1.getValue(); //用类目的对数似然初始化概率
//对文档中的每个特征
for (Map.Entry<Integer, int[]> entry2 : document.tfMap.entrySet())
{
feature = entry2.getKey();
if (!model.logLikelihoods.containsKey(feature))
{
continue; //如果在模型中找不到就跳过了
}
occurrences = entry2.getValue()[0]; //获取其在文档中的频次
logprob += occurrences * model.logLikelihoods.get(feature).get(category); //将对数似然乘上频次
}
predictionScores[category] = logprob;
}
if (configProbabilityEnabled) MathUtility.normalizeExp(predictionScores);
return predictionScores;
}
这么看来,之前遇到的下边的这个badcase就还要再分析
[1] 化验指标一变化患者就六神无主,看医生怎么讲解
核心词:患者 看医生
这里“患者”和“看医生”两个词都没在“艺术”类训练语料中出现,但是预测概率最大的反倒是“艺术”。
由于用PyHanLP没法看到预测概率的计算过程,所以还是把Python的分类预测代码改为Java代码调式看一下。今天移植了预处理,资源加载,人工干预部分的代码,明天把剩余预测部分移植为Java再来看这个badcase。这就是朴素贝叶斯的优势,分析起来非常清晰容易。不过从PyHanLP的预测输出概率值来看,不太像是取了对数相加得到的,因为都是0-1之间的数值,这一看就是概率值。
HanLP-朴素贝叶斯分类预测缺陷的更多相关文章
- 机器学习之路: python 朴素贝叶斯分类器 MultinomialNB 预测新闻类别
使用python3 学习朴素贝叶斯分类api 设计到字符串提取特征向量 欢迎来到我的git下载源代码: https://github.com/linyi0604/MachineLearning fro ...
- 分类算法之朴素贝叶斯分类(Naive Bayesian Classification)
1.什么是分类 分类是一种重要的数据分析形式,它提取刻画重要数据类的模型.这种模型称为分类器,预测分类的(离散的,无序的)类标号.例如医生对病人进行诊断是一个典型的分类过程,医生不是一眼就看出病人得了 ...
- 用scikit-learn实现朴素贝叶斯分类器 转
原文:http://segmentfault.com/a/1190000002472791 朴素贝叶斯(Naive Bayes Classifier)是一种「天真」的算法(假定所有特征发生概率是独立的 ...
- SparkMLib分类算法之朴素贝叶斯分类
SparkMLib分类算法之朴素贝叶斯分类 (一)朴素贝叶斯分类理解 朴素贝叶斯法是基于贝叶斯定理与特征条件独立假设的分类方法.简单来说,朴素贝叶斯分类器假设样本每个特征与其他特征都不相关.举个例子, ...
- javascript实现朴素贝叶斯分类与决策树ID3分类
今年毕业时的毕设是有关大数据及机器学习的题目.因为那个时间已经步入前端的行业自然选择使用JavaScript来实现其中具体的算法.虽然JavaScript不是做大数据处理的最佳语言,相比还没有优势,但 ...
- 朴素贝叶斯分类法 Naive Bayes ---R
朴素贝叶斯算法 [转载时请注明来源]:http://www.cnblogs.com/runner-ljt/ Ljt 勿忘初心 无畏未来 作为一个初学者,水平有限,欢迎交流指正. 朴素贝叶斯分类法 ...
- 机器学习---朴素贝叶斯分类器(Machine Learning Naive Bayes Classifier)
朴素贝叶斯分类器是一组简单快速的分类算法.网上已经有很多文章介绍,比如这篇写得比较好:https://blog.csdn.net/sinat_36246371/article/details/6014 ...
- 朴素贝叶斯分类器及Python实现
贝叶斯定理 贝叶斯定理是通过对观测值概率分布的主观判断(即先验概率)进行修正的定理,在概率论中具有重要地位. 先验概率分布(边缘概率)是指基于主观判断而非样本分布的概率分布,后验概率(条件概率)是根据 ...
- 利用朴素贝叶斯分类算法对搜狐新闻进行分类(python)
数据来源 https://www.sogou.com/labs/resource/cs.php介绍:来自搜狐新闻2012年6月—7月期间国内,国际,体育,社会,娱乐等18个频道的新闻数据,提供URL ...
随机推荐
- Oracle 物理结构(三) 文件-参数文件
一.参数文件介绍 Oracle中的参数文件是一个包含一系列参数以及参数对应值的操作系统文件.它们是在数据库实例启动时候加载的, 决定了数据库的物理 结构.内存.数据库的限制及系统大量的默认值.数据库的 ...
- 安裝開源BBS軟件YAF時碰到的問題
1.下載 http://yetanotherforum.net/download.aspx 安裝說明 http://www.drreddys.com/quest/readme.htm 其實只要打開根目 ...
- 7zip使用相关
造冰箱的大熊猫@cnblogs 2019/11/2 1.仅存储不压缩 7z a -mx0 compressed.7z FileFolderPath 将FileFolderPath指向的文件或文件夹打包 ...
- [Luogu] 区间统计Tallest Cow
https://www.luogu.org/problemnew/show/P2879 差分 | 线段树 #include <iostream> #include <cstdio&g ...
- MySQL数据分析-(2)数据库的底层逻辑
(一) 数据库存在的逻辑 1.案例开篇-大部分公司对于数据和数字的管理都是低效率的 我们要学习数据库,就必须要搞清楚数据库是在什么样的情景下发明并流行的?学习新知识就要搞清楚每个知识点的来龙去脉,这样 ...
- vue-cli脚手架构建项目
vue-cli 是一个官方发布 vue.js 项目脚手架,使用 vue-cli 可以快速创建 vue 项目. 一.安装node.js 二.安装vue-cli npm install -g vue-cl ...
- 为win10下的linux子系统终端添加powerline
一切按照上一篇完成,如果成功了,你厉害了我的哥,如果不成功,win10安装powerline字体才可以,才可以,才可以 sudo apt install build-essential cmake g ...
- React的基本认识
1.1.1. 官网 1) 英文官网: https://reactjs.org/ 2) 中文官网: https://doc.react-china.org/ 1.1.2. 介绍描述 1) 用于构建用户 ...
- mysql -- 清空表中数据
删除表信息的方式有两种 :truncate table table_name;delete * from table_name;注 : truncate操作中的table可以省略,delete操作中的 ...
- Linunx创建软连接、删除软连接、修改软连接
创建: ln -s [目标目录] [软链接地址] ln -s /usr/local/python3/bin/python3 /usr/bin/python3ln -s /usr/local/pytho ...