pytorch-Alexnet 网络
Alexnet网络结构, 相比于LeNet,Alexnet加入了激活层Relu, 以及dropout层

第一层网络结构: 11x11x3x96, 步长为4, padding=2
第二层网络结构: 5x5x96x256, 步长为1, padding=1
第三层网络结构: 3x3x256x384,步长为1, padding=1
第四层网络结构: 3x3x256x384,步长为1,padding=1
第五层网络结构: 3x3x384x384, 步长为1,padding=1
第六层网络结构: 3x3x384x256, 步长为1, padding=1
第七层网络结构: 进行维度变化, 进行dropout操作, 进行(256*6*6, 4096)全连接操作
第八层:进行dropout操作,进行全连接操作(4096, 4096)
第九层: 输出层的操作, 进行全连接(4096, num_classes)
from torch import nn class AlexNet(nn.Module):
def __init__(self, num_classes):
super(AlexNet, self).__init__()
self.feature = nn.Sequential(
nn.Conv2d(3, 96, kernel_size=11, stride=4, padding=2),
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=3, stride=2),
nn.Conv2d(96, 256, kernel_size=5, padding=2),
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=3, stride=2),
nn.Conv2d(256, 384, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
nn.Conv2d(384, 384, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
nn.Conv2d(384, 256, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=3, stride=2),)
self.classifier = nn.Sequential(
nn.Dropout(),
nn.Linear(256 * 6 * 6, 4096),
nn.ReLU(inplace=True),
nn.Dropout(),
nn.Linear(4096, 4096),
nn.ReLU(inplace=True),
nn.Linear(4096, num_classes),
) def forward(self, x):
x = self.feature(x)
x = self.classifier(x)
return x
pytorch-Alexnet 网络的更多相关文章
- AlexNet 网络详解及Tensorflow实现源码
版权声明:本文为博主原创文章,未经博主允许不得转载. 1. 图片数据处理 2. 卷积神经网络 2.1. 卷积层 2.2. 池化层 2.3. 全链层 3. AlexNet 4. 用Tensorflow搭 ...
- 第十六节,卷积神经网络之AlexNet网络实现(六)
上一节内容已经详细介绍了AlexNet的网络结构.这节主要通过Tensorflow来实现AlexNet. 这里做测试我们使用的是CIFAR-10数据集介绍数据集,关于该数据集的具体信息可以通过以下链接 ...
- 第十五节,卷积神经网络之AlexNet网络详解(五)
原文 ImageNet Classification with Deep ConvolutionalNeural Networks 下载地址:http://papers.nips.cc/paper/4 ...
- Caffe训练AlexNet网络,精度不高或者为0的问题结果
当我们使用Caffe训练AlexNet网络时,会遇到精度一值在低精度(30%左右)升不上去,或者精度总是为0,如下图所示: 出现这种情况,可以尝试使用以下几个方法解决: 1.数据样本量是否太少,最起码 ...
- 如何使用 libtorch 实现 AlexNet 网络?
如何使用 libtorch 实现 AlexNet 网络? 按照图片上流程写即可.输入的图片大小必须 227x227 3 通道彩色图片 // Define a new Module. struct Ne ...
- AlexNet网络的Pytorch实现
1.文章原文地址 ImageNet Classification with Deep Convolutional Neural Networks 2.文章摘要 我们训练了一个大型的深度卷积神经网络用于 ...
- pytorch实现AlexNet网络
直接上图吧 写网络就像搭积木
- AlexNet网络
AlexNet 中包含了比较新的技术点,首次在CNN中成功应用了 ReLu .Dropout和LRN等Trick. 1.成功使用了Relu作为CNN的激活函数,并验证其效果在较深的网络中超过了Sigm ...
- 深入理解AlexNet网络
原文地址:https://blog.csdn.net/luoluonuoyasuolong/article/details/81750190 AlexNet论文:<ImageNet Classi ...
- 从头学pytorch(十七):网络中的网络NIN
网络中的网络NIN 之前介绍的LeNet,AlexNet,VGG设计思路上的共同之处,是加宽(增加卷积层的输出的channel数量)和加深(增加卷积层的数量),再接全连接层做分类. NIN提出了一个不 ...
随机推荐
- 使用 function 构造函数创建组件和使用 class 关键字创建组件
使用 function 构造函数创建组件: 如果想要把组件放到页面中,可以把构造函数的名称,当作 组件的名称,以 HTML标签形式引入页面中, 因为在React中,构造函数就是一个最基本的组件. 注意 ...
- java EE加载peoperties配置文件
//加载配置文件 InputStream in = JedisUtils.class.getClassLoader().getResourceAsStream("redis.properti ...
- ASE2019 model组 事后诸葛亮会议记录
诸葛亮文档 设想和目标 1. 我们的软件要解决什么问题?是否定义得很清楚?是否对典型用户和典型场景有清晰的描述? 传统编程教育模式下,初学者(主要是刚刚接触编程的学生)往往依靠老师与助教的课堂教学,由 ...
- 关于rtos中任务切换时的程序流程
今天和一个小伙伴讨论了一下基于cortex-m3内核的RTOS在任务切换时的程序流程,小伙伴说国内某搜索引擎都搜不到这类的信息,所以我才打算写下来,硬件平台是stm32f1. 这里的切换有两种情况: ...
- web开发:javascript之dom与bom
一.节点认知 二.文档结构 三.文档节点操作 四.事件target 五.BOM操作 一.节点认知 - dom与dom属性 <!DOCTYPE html> <html> < ...
- web开发:css总结与应用
一.常用标签的使用 二.边界圆角 三.背景样式 四.精灵图 五.盒模型布局细节 六.盒模型案例 七.w3c主页 一.常用标签的使用 <!DOCTYPE html> <html> ...
- 多线程模块的condition对象
Python提供的Condition对象提供了对复杂线程同步问题的支持.Condition被称为条件变量,除了提供与Lock类似的acquire和release方法外,还提供了wait和notify方 ...
- 注意条件表达式规范[JLS 15.25]
/** * 猜猜输出结果是什么 */ public class appalet { public static void main(String[] args) { char x = 'x'; int ...
- 【Java 基础实例—Bank 项目1】
(上图Wie任务要求的UML结构) Account.java 文件: package Banking_1; public class Account { private double balance; ...
- RAID 10是将RAID 1和RAID 0结合
RAID 10是将RAID 1和RAID 0结合,它的优点是同时拥有RAID 0的超凡速度和RAID 1的数据高可靠性,但是CPU占用率同样也更高,而且磁盘的利用率比较低.由于利用了RAID 0极高的 ...