Alexnet网络结构, 相比于LeNet,Alexnet加入了激活层Relu, 以及dropout层

第一层网络结构: 11x11x3x96, 步长为4, padding=2

第二层网络结构: 5x5x96x256, 步长为1, padding=1

第三层网络结构: 3x3x256x384,步长为1, padding=1

第四层网络结构: 3x3x256x384,步长为1,padding=1

第五层网络结构: 3x3x384x384, 步长为1,padding=1

第六层网络结构: 3x3x384x256, 步长为1, padding=1

第七层网络结构: 进行维度变化, 进行dropout操作, 进行(256*6*6, 4096)全连接操作

第八层:进行dropout操作,进行全连接操作(4096, 4096)

第九层: 输出层的操作, 进行全连接(4096, num_classes)

from torch import nn

class AlexNet(nn.Module):
def __init__(self, num_classes):
super(AlexNet, self).__init__()
self.feature = nn.Sequential(
nn.Conv2d(3, 96, kernel_size=11, stride=4, padding=2),
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=3, stride=2),
nn.Conv2d(96, 256, kernel_size=5, padding=2),
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=3, stride=2),
nn.Conv2d(256, 384, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
nn.Conv2d(384, 384, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
nn.Conv2d(384, 256, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=3, stride=2),)
self.classifier = nn.Sequential(
nn.Dropout(),
nn.Linear(256 * 6 * 6, 4096),
nn.ReLU(inplace=True),
nn.Dropout(),
nn.Linear(4096, 4096),
nn.ReLU(inplace=True),
nn.Linear(4096, num_classes),
) def forward(self, x):
x = self.feature(x)
x = self.classifier(x)
return x

pytorch-Alexnet 网络的更多相关文章

  1. AlexNet 网络详解及Tensorflow实现源码

    版权声明:本文为博主原创文章,未经博主允许不得转载. 1. 图片数据处理 2. 卷积神经网络 2.1. 卷积层 2.2. 池化层 2.3. 全链层 3. AlexNet 4. 用Tensorflow搭 ...

  2. 第十六节,卷积神经网络之AlexNet网络实现(六)

    上一节内容已经详细介绍了AlexNet的网络结构.这节主要通过Tensorflow来实现AlexNet. 这里做测试我们使用的是CIFAR-10数据集介绍数据集,关于该数据集的具体信息可以通过以下链接 ...

  3. 第十五节,卷积神经网络之AlexNet网络详解(五)

    原文 ImageNet Classification with Deep ConvolutionalNeural Networks 下载地址:http://papers.nips.cc/paper/4 ...

  4. Caffe训练AlexNet网络,精度不高或者为0的问题结果

    当我们使用Caffe训练AlexNet网络时,会遇到精度一值在低精度(30%左右)升不上去,或者精度总是为0,如下图所示: 出现这种情况,可以尝试使用以下几个方法解决: 1.数据样本量是否太少,最起码 ...

  5. 如何使用 libtorch 实现 AlexNet 网络?

    如何使用 libtorch 实现 AlexNet 网络? 按照图片上流程写即可.输入的图片大小必须 227x227 3 通道彩色图片 // Define a new Module. struct Ne ...

  6. AlexNet网络的Pytorch实现

    1.文章原文地址 ImageNet Classification with Deep Convolutional Neural Networks 2.文章摘要 我们训练了一个大型的深度卷积神经网络用于 ...

  7. pytorch实现AlexNet网络

    直接上图吧 写网络就像搭积木

  8. AlexNet网络

    AlexNet 中包含了比较新的技术点,首次在CNN中成功应用了 ReLu .Dropout和LRN等Trick. 1.成功使用了Relu作为CNN的激活函数,并验证其效果在较深的网络中超过了Sigm ...

  9. 深入理解AlexNet网络

    原文地址:https://blog.csdn.net/luoluonuoyasuolong/article/details/81750190 AlexNet论文:<ImageNet Classi ...

  10. 从头学pytorch(十七):网络中的网络NIN

    网络中的网络NIN 之前介绍的LeNet,AlexNet,VGG设计思路上的共同之处,是加宽(增加卷积层的输出的channel数量)和加深(增加卷积层的数量),再接全连接层做分类. NIN提出了一个不 ...

随机推荐

  1. 微信小程序上传图片更新图像

    解决思路: 1. 调用wx.chooseImage 选择图片 2.wx.uploadFile 上传图片 3.调用后台接口进行修改操作 修改原来的头像 wx.chooseImage({ success: ...

  2. elasticsearch 配置外网访问

    进入  config/ elasticsearch.ym 修改:network.host: 127.0.0.1 或者内网Ip 添加:http.host: 0.0.0.0

  3. python 判断两个ip地址是否属于同一子网

    python 判断两个ip地址是否属于同一子网 """ 判断两个IP是否属于同一子网, 需要判断网络地址是否相同 网络地址:IP地址的二进制与子网掩码的二进制地址逻辑&q ...

  4. Git---初入开源代码管理库的学习过程003

    Git常用命令总结 上接<Git 初入开源代码管理库的学习过程>学了一周Git,基本有了个认识.每一位比我厉害的,都是大牛,网上找了几篇博客和教材(感谢你们),边学习边实践用了四天,写笔记 ...

  5. Introduction to Go Modules

    转:https://roberto.selbach.ca/intro-to-go-modules/ git init git add * git commit -am "First comm ...

  6. Oracle 单列去重 显示单行所有列数据

    问题:test_table 表中有 a,b,c 三个字段,求根据字段a 去除重复数据,得到去重后的整行数据 根据mysql的经验尝试以下方法均失败 1.使用 distinct 关键字 (oracle查 ...

  7. Elasticsearch:运用search_after来进行深度分页

    在上一篇文章 "Elasticsearch:运用scroll接口对大量数据实现更好的分页",我们讲述了如何运用scroll接口来对大量数据来进行有效地分页.在那篇文章中,我们讲述了 ...

  8. Error creating bean with name 'documentationPluginsBootstrapper' defined in URL

    启动报错 Error starting ApplicationContext. To display the auto-configuration report re-run your applica ...

  9. NPM酷库:jsdom,纯JS实现的DOM

    NPM酷库,每天两分钟,了解一个流行NPM库. 昨天认识了一个在Node.js环境下操作HTML的库 cheerio,cheerio实现了jQuery接口,用起来十分方便.为什么不直接用jQuery呢 ...

  10. 前端知识体系:JavaScript基础-一个原型继承例子

    function Elem(id) { this.elem = document.getElementById(id); } Elem.prototype.html = function(val){ ...