BZOJ3037 创世纪[基环树DP]
实际上基环树DP的名字是假的。。
这个限制关系可以看成每个点有一条出边,所以就是一个内向基环树森林。
找出每个基环树的环,然后对于树的部分,做DP,设状态选或不选为$f_{x,0/1}$,则
$f_{x,0}=\sum\limits_{y\in son_x} \max\{f_{y,0},f_{y,1}\}$
$f_{x,1}=\sum\limits_{y\in son_x} \max\{f_{y,0},f_{y,1}\}+[全选了f_{y,1}?]\sum\limits_{y\in son_x} \max\{f_{y,0}-f_{y,1}\}$
这个DP很简单,但是在环上很难处理,因为每个点取不取既和环上前一个点有关也和儿子有关,这个环上的点DP转移是有后效性的。
采用基环树DP另一个常用的手段:断环成树,树形容易处理,避免后效性。断环时,应当注意断开的环上两个点相互影响的关系。
比如此题,每一个点可能会影响后一个点的选择,分两种情况:此点不影响下一个点,则断开后,以此点为根做树形DP,那么两点互不影响,题目条件都成立。
若考虑有影响,则需要这个点不选,让下一个点可以随便选儿子的两个状态较大值而不用担心没有指向他的不选的点。
综上,断边后做两次DP即可。
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
#include<queue>
#define mst(x) memset(x,0,sizeof x)
#define dbg(x) cerr << #x << " = " << x <<endl
#define dbg2(x,y) cerr<< #x <<" = "<< x <<" "<< #y <<" = "<< y <<endl
using namespace std;
typedef long long ll;
typedef double db;
typedef pair<int,int> pii;
template<typename T>inline T _min(T A,T B){return A<B?A:B;}
template<typename T>inline T _max(T A,T B){return A>B?A:B;}
template<typename T>inline char MIN(T&A,T B){return A>B?(A=B,):;}
template<typename T>inline char MAX(T&A,T B){return A<B?(A=B,):;}
template<typename T>inline void _swap(T&A,T&B){A^=B^=A^=B;}
template<typename T>inline T read(T&x){
x=;int f=;char c;while(!isdigit(c=getchar()))if(c=='-')f=;
while(isdigit(c))x=x*+(c&),c=getchar();return f?x=-x:x;
}
const int N=1e6+;
struct thxorz{
int head[N],nxt[N<<],to[N<<],tot;
thxorz(){tot=;}
inline void add(int x,int y){
to[++tot]=y,nxt[tot]=head[x],head[x]=tot;
to[++tot]=x,nxt[tot]=head[y],head[y]=tot;
}
}G;
int n;
#define y G.to[j]
int vis[N],to,rt,flag,ans,res,ban;
void dfs(int x){//dbg(x);
vis[x]=;
for(register int j=G.head[x];j;j=G.nxt[j])if(!(j&)){
if(vis[y])return rt=x,to=y,ban=j,void();
else dfs(y);
}
}
int f[N][];
void dp1(int x,int fa){
vis[x]=;int chosen=;f[x][]=;
for(register int j=G.head[x];j;j=G.nxt[j])if(y^fa&&j^ban&&j^(ban^)){
dp1(y,x);
if(f[y][]<f[y][])f[x][]+=f[y][],f[x][]+=f[y][];
else f[x][]+=f[y][],f[x][]+=f[y][],chosen=;
}
if(chosen){
int tmp=-N;
for(register int j=G.head[x];j;j=G.nxt[j])if(y^fa&&j^ban&&j^(ban^))MAX(tmp,f[y][]-f[y][]);
f[x][]+=tmp;
}//dbg2(x,chosen);
}
void dp2(int x,int fa){
int chosen=;f[x][]=,f[x][]=;
for(register int j=G.head[x];j;j=G.nxt[j])if(y^fa&&j^ban&&j^(ban^)){
dp2(y,x);
if(f[y][]<f[y][])f[x][]+=f[y][],f[x][]+=f[y][];
else f[x][]+=f[y][],f[x][]+=f[y][],chosen=;
}
if(chosen&&x!=to){
int tmp=-N;
for(register int j=G.head[x];j;j=G.nxt[j])if(y^fa&&j^ban&&j^(ban^))MAX(tmp,f[y][]-f[y][]);
f[x][]+=tmp;
}
}
#undef y int main(){//freopen("test.in","r",stdin);//freopen("test.ans","w",stdout);
read(n);
for(register int i=,x;i<=n;++i)read(x),G.add(i,x);
for(register int i=;i<=n;++i,res=)if(!vis[i]){
dfs(i);
dp1(rt,);//不考虑断环之后根对断点有影响
res=_max(f[rt][],f[rt][]);
dp2(rt,);//考虑断环之后根对断点有影响(即不选根)
MAX(res,f[rt][]);
ans+=res;
}
printf("%d\n",ans);
return ;
}
总结:基环树另一种常见做法:断环成树,考虑影响,做两次树形DP。
BZOJ3037 创世纪[基环树DP]的更多相关文章
- tyvj 创世纪 - 基环树
codevs : 传送门 Description 上帝手中有着N 种被称作“世界元素”的东西,现在他要把它们中的一部分投放到一个新的空间中去以建造世界. 每种世界元素都可以限制另外一种世界元素,所 ...
- BZOJ3037 创世纪(基环树DP)
基环树DP,攻的当受的儿子,f表选,g表不选.并查集维护攻受关系.若有环则记录,DP受的后把它当祖宗,再DP攻的. #include <cstdio> #include <iostr ...
- bzoj1791[IOI2008]Island岛屿(基环树+DP)
题目链接:https://www.lydsy.com/JudgeOnline/problem.php?id=1791 题目大意:给你一棵n条边的基环树森林,要你求出所有基环树/树的直径之和.n< ...
- 【bzoj1040】[ZJOI2008]骑士 并查集+基环树dp
题目描述 Z国的骑士团是一个很有势力的组织,帮会中汇聚了来自各地的精英.他们劫富济贫,惩恶扬善,受到社会各界的赞扬.最近发生了一件可怕的事情,邪恶的Y国发动了一场针对Z国的侵略战争.战火绵延五百里,在 ...
- BZOJ1040:骑士(基环树DP)
Z国的骑士团是一个很有势力的组织,帮会中汇聚了来自各地的精英.他们劫富济贫,惩恶扬善,受到社会各界的赞扬.最近发生了一件可怕的事情,邪恶的Y国发动了一场针对Z国的侵略战争.战火绵延五百里,在和平环境中 ...
- 基环树DP
基环树DP Page1:问题 啥是基环树?就是在一棵树上增加一条边. Page2:基环树的几种情况 无向 有向:基环外向树,基环内向树. Page3:处理问题的基本方式 1.断环成树 2.分别处理树和 ...
- [CSP-S模拟测试]:卡常题/b(基环树+DP)
题目描述 $ρ$有一个二分连通无向图,$X$方点.$Y$方点均为$n$个(编号为$1\sim n$).这个二分图比较特殊,每一个$Y$方点的度为$2$,一条黑色边,一条白色边.所有黑色边权值均为$a$ ...
- [ZJOI2008] 骑士 - 基环树dp
一类基环树dp都是这个套路吧 随便拆掉环上的一条边 然后跑树形dp,设\(f[i][0/1]\)表示以第\(i\)个人为根的子树,第\(i\)个人选或不选,能收获的最大值 以断点\(u,v\)为根分别 ...
- [bzoj2878][Noi2012]迷失游乐园(基环树dp)
[bzoj2878][Noi2012]迷失游乐园(基环树dp) bzoj luogu 题意:一颗数或是基环树,随机从某个点开始一直走,不走已经到过的点,求无路可走时的路径长期望. 对于一棵树: 用两个 ...
随机推荐
- IO阻塞模型、IO非阻塞模型、多路复用IO模型
IO操作主要包括两类: 本地IO 网络IO 本地IO:本地IO是指本地的文件读取等操作,本地IO的优化主要是在操作系统中进行,我们对于本地IO的优化作用十分有限 网络IO:网络IO指的是在进行网络操作 ...
- golang的time包:时间字符串和时间戳的相互转换
本博客转自: https://blog.csdn.net/mirage003/article/details/86073046 package main import ( "log" ...
- 编写一个自定义事件类,包含on/off/emit/once方法
function Event() { this._events = {}; } Event.prototype.on = function(type, fn) { if (!this._events[ ...
- Linux安装jemalloc笔记
前言 最近研究一个工具库需要用 jemalloc 做内存分配器,但在 ubuntu 下安装过程中遇到很多问题,故记下安装过程的笔记,避免以后遇到在这上面浪费时间. 安装过程 环境:VMware Ubu ...
- 【转帖】samba的配置文件smb.conf详细说明
samba的配置文件smb.conf详细说明 https://blog.csdn.net/cqboy1991/article/details/9791033 找时间自己写一个blog 说明一下搭建过程 ...
- TIME_WAIT和CLOSE_WAIT的区别
系统上线之后,通过如下语句查看服务器时,发现有不少TIME_WAIT和CLOSE_WAIT. netstat -n | awk '/^tcp/ {++S[$NF]} END {for(a in S) ...
- oracle学习笔记day2
第三章:单值函数 函数分为: 1.单值函数 1.字符函数 2.日期函数 3.转换函数 4.数字函数 2.分组函数(后面的章节再做学习) 哑表dual dual是一个虚拟表,用来构成select的语法规 ...
- java中讲讲PrintWriter的用法,举例?
[学习笔记] 1.2 PrintWriter的用法 PrintWriter和PrintStream类似,只不过PrintStream是针对字节流的,而PrintWriter是针对字符流的. 例:1.2 ...
- 题目15 链表中倒数第K个节点
///////////////////////////////////////////////////////////////////////////////////// // 5. 题目15 链表中 ...
- CentOS7 PHP cURL errno 35, 原因:CentOS7中没有安装curl和OpenSSL的最新版
安装OpenSSL的最新版 话不多说,直接上安装步骤 #cd /usr/local/src # 跳过证书获取失败 # wget https://www.openssl.org/source/opens ...