2019 ICPC 沈阳网络赛 J. Ghh Matin
Problem
Similar to the strange ability of Martin (the hero of Martin Martin), Ghh will random occurrence in one of \(N\) cities every morning and the money will change to \(X\) RMB (No matter how much money had yesterday).
Ghh finds that every \(N\) cities have only one way to enter and go out (for example, city A's out road is connected with city B's enter road, or city A's out road may also be connected with city A's enter road). After waking up one day, Ghh suddenly wants to do an experiment.
In the following days, Ghh will judge whether he has experimented in the city every time he wakes up. If not, he will go out to see if he can start from the city and finally return to itself. If he can't or has already done it, he will stay until the evening and go to the next random city by sleeping. This experiment lasts until every \(N\) cities have been done.
Because the distances between cities are very far, Ghh decides to take bus. The cost of bus between any two cities is \(1\) RMB (it also costs \(1\) RMB for the city that the enter road is connected with the out road of itself) and the speed is very fast. What is the probability that Ghh can return to the city itself from every city when Ghh has finished the experiment?
Note
When \(n=2\), there are two cases in city A and B:
- A connected with A, B connected with B
- A connected with B
When \(X\) is 1, only in the first case every city can return to itself, so the probability is 1/2. When \(X\) is 2, any case is ok.
Input
The first line, input a integer \(T\) represents the number of test cases (\(T \le 10^4\)). Next \(2\) ~ \(T+1\) line, input two integers \(N\), \(X\) represents the total number of cities and initial money (\(2≤N≤10^6\),\(N≤2X≤2×10^9\)). \(\sum{N} \le 10^7\).
Output
Each test case output one line, the probabilities may be \(a/b\), please output \(a*inv(b)\mod (10^9+7)\). \(inv(b)\) is the inverse of \(b\).
样例输入复制
3
2 1
2 2
145 134
样例输出复制
500000004
1
772215686
Comprehension
题意大概是说:有n个城市,每个城市只有以一种进出方式(入度、出度相同),从一个城市去另一个城市要1块钱。现在不知道这个图是什么样的,现在需要能从每个城市出发(有X块钱)能回到该城市,得到这样的图的概率是多少?
也就是说:目标的图肯定是很多欧拉回路组成的图,问每条欧拉回路的长度都不大于X的概率是多少?
Solve
根据对题意的理解,我们发现不好枚举这样的图,不如去枚举所有不满足该条件的图,也就是说去找存在欧拉回路长度大于X的图。
题目限制了\(N\le 2X\) ,这就是说有X点的欧拉回路,就没有X+1的
很显然,选出大于X个点连成环,剩下点自由组合。
我们不妨设大于X个点是m,\(X<m<N\)
\(P(m)=\)存在欧拉回路长度大于X的图的数量/总图数
存在欧拉回路长度大于X的图的数量=N个里面选m个 \(\times\) m-1(环内)的全排列(因为起点是固定的 \(\times\) n-m(剩下的点)的全排列
\(P(m)=C(m,N)*(m-1)!*(N-m)!/N!=1/m\)
所以\(ans=1-\sum\limits_{m>X}^N{P(m)}\)
因为\(P(m)\) 最大到N,是1e6,所以开个前缀和维护一下,省时间
Code
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const int mod = 1e9 + 7;
const int maxn = 1e6+4;
ll qpow(ll a,ll b){
ll ans=1;
while(b){
if(b&1)
ans=(ans*a)%mod;
a=(a*a)%mod;
b>>=1;
}
return ans%mod;
}
ll inv(ll a){
return qpow(a,mod-2);
}
ll sum[maxn];
int main()
{
int t;
ll n,x;
for(int i = 1; i<maxn;i++){
sum[i]=(sum[i-1]+inv(i))%mod;
}
scanf("%d",&t);
while(t--) {
scanf("%lld%lld", &n, &x);
ll ans=1;
if(n>x)
ans = (ans+ mod -(sum[n]-sum[x]))%mod;
cout<<ans<<endl;
}
return 0;
}
2019 ICPC 沈阳网络赛 J. Ghh Matin的更多相关文章
- 2018 ICPC 沈阳网络赛
2018 ICPC 沈阳网络赛 Call of Accepted 题目描述:求一个算式的最大值与最小值. solution 按普通算式计算方法做,只不过要同时记住最大值和最小值而已. Convex H ...
- 2019 ICPC 南昌网络赛
2019 ICPC 南昌网络赛 比赛时间:2019.9.8 比赛链接:The 2019 Asia Nanchang First Round Online Programming Contest 总结 ...
- 计蒜客 2019南昌邀请网络赛J Distance on the tree(主席树)题解
题意:给出一棵树,给出每条边的权值,现在给出m个询问,要你每次输出u~v的最短路径中,边权 <= k 的边有几条 思路:当时网络赛的时候没学过主席树,现在补上.先树上建主席树,然后把边权交给子节 ...
- 2019年ICPC南昌网络赛 J. Distance on the tree 树链剖分+主席树
边权转点权,每次遍历到下一个点,把走个这条边的权值加入主席树中即可. #include<iostream> #include<algorithm> #include<st ...
- 2017 icpc 沈阳网络赛
cable cable cable Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others ...
- 2019南昌邀请赛网络赛:J distance on the tree
1000ms 262144K DSM(Data Structure Master) once learned about tree when he was preparing for NOIP(N ...
- 2019 ICPC南京网络赛 F题 Greedy Sequence(贪心+递推)
计蒜客题目链接:https://nanti.jisuanke.com/t/41303 题目:给你一个序列a,你可以从其中选取元素,构建n个串,每个串的长度为n,构造的si串要满足以下条件, 1. si ...
- 2019 ICPC 银川网络赛 F-Moving On (卡Cache)
Firdaws and Fatinah are living in a country with nn cities, numbered from 11 to nn. Each city has a ...
- 2019 ICPC 南京网络赛 F Greedy Sequence
You're given a permutation aa of length nn (1 \le n \le 10^51≤n≤105). For each i \in [1,n]i∈[1,n], c ...
随机推荐
- 从入门到精通,Java学习路线导航
引言最近也有很多人来向我"请教",他们大都是一些刚入门的新手,还不了解这个行业,也不知道从何学起,开始的时候非常迷茫,实在是每天回复很多人也很麻烦,所以在这里统一作个回复吧. Ja ...
- GOF学习笔记1:术语
1.abstract class 抽象类定义了一个接口,把部分或全部实现留给了子类,不能实例化. 2.abstract coupling 抽象耦合如果一个类A引用了另一个抽象类B,那么就说A是抽象耦 ...
- java中对List中的元素进行排序
Collections对List集合中的数据进行排序 有时候需要对集合中的元素按照一定的规则进行排序,这就需要用到 Java中提供的对集合进行操作的工具类Collections,其中的sort方法 N ...
- python列表操作大全
Python列表操作大全 对于python列表的理解可以和C语言里面的数组进行比较性的记忆与对照,它们比较相似,对于python里面列表的定义可以直接用方括号里加所包含对象的方法,并且python的列 ...
- Xshell 上传文件到Ubuntu
打开Xshell,连上一台Linux服务器或者是虚拟机 如果要方便的上传文件,需要rz 先测试是否安装rz 命令行~$ rz 如果出现未安装(或者command not found)且建议sudo a ...
- CentOS7安装CDH 第十章:CDH中安装Spark2
相关文章链接 CentOS7安装CDH 第一章:CentOS7系统安装 CentOS7安装CDH 第二章:CentOS7各个软件安装和启动 CentOS7安装CDH 第三章:CDH中的问题和解决方法 ...
- Scyther-Compromise 协议形式化安全分析如何改进协议
1.最终的目的是如何将协议的不安全因素进行改进,提升安全性能.对协议中有关的加密和认证的过程进行形式化分析验证的时候通过添加敌手模型的(DY模型和eCK强安全模型),接受者和发送者之间的通信过程可能存 ...
- Qt中C++与QML交互
###main.c部分int main(int argc, char *argv[]){ QString info1 = "xxxxxxxxxxx"; QString ...
- 管理Linux软件——aptitude
https://help.ubuntu.com/lts/serverguide/aptitude.html.en
- Java8新特性之重复注解(repeating annotations)
一.什么是重复注解 允许在同一申明类型(类,属性,或方法)的多次使用同一个注解 二.一个简单的例子java 8之前也有重复使用注解的解决方案,但可读性不是很好,比如下面的代码: 复制代码代码如下: p ...