E. New Reform

Berland has n cities connected by m bidirectional roads. No road connects a city to itself, and each pair of cities is connected by no more than one road. It is not guaranteed that you can get from any city to any other one, using only the existing roads.

The President of Berland decided to make changes to the road system and instructed the Ministry of Transport to make this reform. Now, each road should be unidirectional (only lead from one city to another).

In order not to cause great resentment among residents, the reform needs to be conducted so that there can be as few separate cities as possible. A city is considered separate, if no road leads into it, while it is allowed to have roads leading from this city.

Help the Ministry of Transport to find the minimum possible number of separate cities after the reform.

Input
The first line of the input contains two positive integers, n and m — the number of the cities and the number of roads in Berland (2 ≤ n ≤ 100 000, 1 ≤ m ≤ 100 000).

Next m lines contain the descriptions of the roads: the i-th road is determined by two distinct integers xi, yi (1 ≤ xi, yi ≤ n, xi ≠ yi), where xi and yi are the numbers of the cities connected by the i-th road.

It is guaranteed that there is no more than one road between each pair of cities, but it is not guaranteed that from any city you can get to any other one, using only roads.

Output
Print a single integer — the minimum number of separated cities after the reform.

Input


Output


题意:n个城市,m条双向路,将这些路改成单向的,如果一个城市没有通向它的路,(入度为0)就说明该城市是单独的。问修改后最少有几个单独的城市,要使结果最小。

思路:

1.可以建成一个有向图,可能有k个联通块,如果一个联通块没有环,就说明这个联通块,至少有一个城市单独的,因此就化成找联通块和环的问题
2.联通块的话可以用并查集来维护,然后用cir[maxn]数组来标记是否有环,如果这个联通块的根节点存在环,那么该联通块不存在单独的城市,如果不存在环的话cnt++,最后的cnt就是答案;

AC代码:

#include<bits/stdc++.h>

using namespace std;
#define N 150000
int f[N];
int arr[N];
int getf(int v){
    if(v==f[v]){
        return f[v];
    }
    f[v]=getf(f[v]);
    return f[v];
}
void merge(int u,int v){
    int t1=getf(u);
    int t2=getf(v);
    if(t1!=t2){
        f[t2]=t1;
        if(arr[t2]){
            arr[t1]=t2;
        }
    }else{
        arr[t1]=;
    }
}
int n,m;
void init(){
    ;i<=n;i++)
        f[i]=i;
}
int main(){

    cin>>n>>m;
    init();
    ;
    ;i<=m;i++){
        int x,y;
        cin>>x>>y;
        merge(x,y);
    }
    ;i<=n;i++){
        if(f[i]==i&&!arr[i]){
            ans++;
        }
    }
    cout<<ans;
    ;
}

Codeforces Round #346 (Div. 2) E题 并查集找环的更多相关文章

  1. Codeforces Round #346 (Div. 2)---E. New Reform--- 并查集(或连通图)

    Codeforces Round #346 (Div. 2)---E. New Reform E. New Reform time limit per test 1 second memory lim ...

  2. Codeforces Round #582 (Div. 3)-G. Path Queries-并查集

    Codeforces Round #582 (Div. 3)-G. Path Queries-并查集 [Problem Description] 给你一棵树,求有多少条简单路径\((u,v)\),满足 ...

  3. Codeforces Round #260 (Div. 1) C. Civilization 并查集,直径

    C. Civilization Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/455/probl ...

  4. Codeforces Round #541 (Div. 2) D(并查集+拓扑排序) F (并查集)

    D. Gourmet choice 链接:http://codeforces.com/contest/1131/problem/D 思路: =  的情况我们用并查集把他们扔到一个集合,然后根据 > ...

  5. Codeforces Round #376 (Div. 2) C. Socks —— 并查集 + 贪心

    题目链接:http://codeforces.com/contest/731/problem/C 题解: 1.看题目时,大概知道,不同的袜子会因为要在同一天穿而差生了关联(或者叫相互制约), 其中一条 ...

  6. Codeforces Round #623 (Div. 2) D.Recommendations 并查集

    ABC实在是没什么好说的,但是D题真的太妙了,详细的说一下吧 首先思路是对于a相等的分类,假设有n个,则肯定要把n-1个都增加,因为a都是相等的,所以肯定是增加t小的分类,也就是说每次都能处理一个分类 ...

  7. Codeforces Round #346 (Div. 2) A题 [一道让我生气的思维题·]

    A. Round House Vasya lives in a round building, whose entrances are numbered sequentially by integer ...

  8. Codeforces Round #346 (Div. 2) C题

    C. Tanya and Toys In Berland recently a new collection of toys went on sale. This collection consist ...

  9. Codeforces Round #346 (Div. 2) B题

    B. Qualifying Contest Very soon Berland will hold a School Team Programming Olympiad. From each of t ...

随机推荐

  1. 1.4Zookeeper和Thymeleaf的使用

    什么是Zookeeper? Zookeeper 是一个开放源码的分布式应用程序协调服务,它包含一个简单的原语集,分布式应用程序可以基于它实现同步服务.配置维护和命名服务等等.采用下图描述zookeep ...

  2. django中的缓存 跨域问题(同源策略)

    django缓存机制 在动态网站中,用户所有的请求,服务器都会去数据库中进行相应的增,删,查,改,渲染模板,执行业务逻辑,最后生成用户看到的页面. 当一个网站的用户访问量很大的时候,每一次的的后台操作 ...

  3. Python基础总结之第七天开始【认识函数的参数以及返回】(新手可相互督促)

    周日的早上,吃的饱饱,刷刷抖音,开始学习新一天的知识了~~~ 函数的参数: 昨天的笔记中,我们已经使用了参数,在案例中的name和sex 就是参数. 一般的函数都是有参数的,函数的参数都是放在函数定义 ...

  4. PostgreSQL-存储过程

    存储过程其实就是函数,由一组 sql 语句组成,实现比较复杂的数据库操作: 存储过程 是 存储在 数据库服务器 上的,用户可以像调用 sql 自带函数一样 调用存储过程 语法解析 CREATE [OR ...

  5. ajax 跨域要点

    1.async: false 2.dataType: jsonp 3.返回数据格式.正常格式为{ param1: p1, param2: p2 },而jsonp跨域请求时,多了一个参数 callbac ...

  6. oracle练手(一)

    练手001 1.列出至少有一个员工的所有部门 select dname from dept where deptno in (select deptno from emp); select dname ...

  7. Rikka with Competition hdu 6095

    签到题目,排序然后按序清理掉一定会输的结果就可以. ac代码: #include <iostream> #include <cstdio> #include <cstri ...

  8. MangoDB CSharp Driver

    1.引用MongoDB for C# Driver 从网上下载C#访问MongoDB的驱动,得到两个DLL: MongoDB.Driver.dll MongoDB.Bson.dll 将它们引用到项目中 ...

  9. luogu题解 P3629 【[APIO2010]巡逻】树的直径变式

    题目链接: https://www.luogu.org/problemnew/show/P3629 分析 最近被众多dalao暴虐,这道题傻逼地调了两天才知道错哪 不过这题比较良心给你一个容易发现性质 ...

  10. 用表格制作商品购买页面--(table)

    实现效果如图: 首先来看布局,头部图片,内容从左到右分为四个部分   勾选+商品图片+商品名/买家+价格, 所以需要将头部用<td>包括起来,并且设置<td colspan=&quo ...