题目描述 Description

Hanks 博士是BT (Bio-Tech,生物技术) 领域的知名专家,他的儿子名叫Hankson。现
在,刚刚放学回家的Hankson 正在思考一个有趣的问题。
今天在课堂上,老师讲解了如何求两个正整数c1 和c2 的最大公约数和最小公倍数。现
在Hankson 认为自己已经熟练地掌握了这些知识,他开始思考一个“求公约数”和“求公
倍数”之类问题的“逆问题”,这个问题是这样的:已知正整数a0,a1,b0,b1,设某未知正整
数x 满足:
1. x 和a0 的最大公约数是a1;
2. x 和b0 的最小公倍数是b1。
Hankson 的“逆问题”就是求出满足条件的正整数x。但稍加思索之后,他发现这样的
x 并不唯一,甚至可能不存在。因此他转而开始考虑如何求解满足条件的x 的个数。请你帮
助他编程求解这个问题。

输入描述 Input Description

第一行为一个正整数n,表示有n 组输入数据。接下来的n 行每
行一组输入数据,为四个正整数a0,a1,b0,b1,每两个整数之间用一个空格隔开。输入
数据保证a0 能被a1 整除,b1 能被b0 整除。

输出描述 Output Description

每组输入数据的输出结果占一行,为一个整数。
对于每组数据:若不存在这样的 x,请输出0;
若存在这样的 x,请输出满足条件的x 的个数;

样例输入 Sample Input

2
41 1 96 288
95 1 37 1776

样例输出 Sample Output

6
2

数据范围及提示 Data Size & Hint

【说明】
第一组输入数据,x 可以是9、18、36、72、144、288,共有6 个。
第二组输入数据,x 可以是48、1776,共有2 个。
【数据范围】
对于 50%的数据,保证有1≤a0,a1,b0,b1≤10000 且n≤100。
对于 100%的数据,保证有1≤a0,a1,b0,b1≤2,000,000,000 且n≤2000。

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<cmath>
using namespace std;
int cnt,tot;
int a0,a1,b0,b1;
int gcd(int a,int b)
{return b==?a:gcd(b,a%b);}
bool calc(long long x)
{
if(x%a1!=)return ;
return gcd(x/a1,a0/a1)==&&gcd(b1/b0,b1/x)==;
}
int main()
{
int t;
scanf("%d",&t);
while(t--)
{
scanf("%d%d%d%d",&a0,&a1,&b0,&b1);
long long ans=;
for(int i=;i*i<=b1;i++)
{
if(b1%i==)
{
ans+=calc(i);
if(b1/i!=i)
ans+=calc(b1/i);
}
}
printf("%lld\n",ans);
}
}

NOIP2009 Hankson的趣味题的更多相关文章

  1. 洛谷P1072 [NOIP2009] Hankson 的趣味题

    P1072 Hankson 的趣味题 题目描述 Hanks 博士是 BT (Bio-Tech,生物技术) 领域的知名专家,他的儿子名叫 Hankson.现在,刚刚放学回家的 Hankson 正在思考一 ...

  2. NOIP2009 Hankson 的趣味题 : 数论

    题目描述 Hanks 博士是 BT (Bio-Tech,生物技术) 领域的知名专家,他的儿子名叫 Hankson.现在,刚刚放学回家的 Hankson 正在思考一个有趣的问题. 今天在课堂上,老师讲解 ...

  3. [NOIP2009] $Hankson$ 的趣味题 (数论,gcd)

    题目链接 Solution 此题,用到的结论都是比较浅显的,但是,我竟然没想到反过来枚举... 只有50分... 被自己蠢哭... 结论比较浅显: 1.对于两个正整数\(a\),\(b\),设 \(g ...

  4. [NOIp2009] $Hankson$ 的趣味题

    类型:数论 传送门:>Here< 题意:给出四个数$a_0,a_1,b_0,b_1$,求满足$gcd(x,a_0)=a_1,lcm(x,b_0)=b_1$的$x$的个数 解题思路 显然$a ...

  5. luogu1072 [NOIp2009]Hankson的趣味题 (数学+STL::set)

    一个JSB做法 由$\frac{x*b0}{gcd(x,b0)}=b1$,可得$\frac{x}{gcd(x,b0)}=\frac{b1}{b0}$ 设$b2=\frac{b1}{b0}$ 所以对$b ...

  6. NOIP 2009 Hankson 的趣味题

    洛谷 P1072 Hankson 的趣味题 洛谷传送门 JDOJ 1648: [NOIP2009]Hankson的趣味题 T2 JDOJ传送门 Description Hanks 博士是BT (Bio ...

  7. 「NOIP2009」Hankson 的趣味题

    Hankson 的趣味题 [内存限制:$128 MiB$][时间限制:$1000 ms$] [标准输入输出][题目类型:传统][评测方式:文本比较] 题目描述 Hanks 博士是 BT(Bio-Tec ...

  8. CH3201 Hankson的趣味题

    题意 3201 Hankson的趣味题 0x30「数学知识」例题 描述 Hanks博士是BT(Bio-Tech,生物技术)领域的知名专家,他的儿子名叫Hankson.现在,刚刚放学回家的Hankson ...

  9. 算法训练 Hankson的趣味题

    算法训练 Hankson的趣味题   时间限制:1.0s   内存限制:64.0MB        问题描述 Hanks 博士是BT (Bio-Tech,生物技术) 领域的知名专家,他的儿子名叫Han ...

随机推荐

  1. [Django]模型学习记录篇--基础

    模型学习记录篇,仅仅自己学习时做的记录!!! 实现模型变更的三个步骤: 修改你的模型(在models.py文件中). 运行python manage.py makemigrations ,为这些修改创 ...

  2. 深入理解Java的接口和抽象类

    深入理解Java的接口和抽象类 对于面向对象编程来说,抽象是它的一大特征之一.在Java中,可以通过两种形式来体现OOP的抽象:接口和抽象类.这两者有太多相似的地方,又有太多不同的地方.很多人在初学的 ...

  3. PhotoShop算法原理解析系列 - 像素化---》碎片。

    接着上一篇文章的热度,继续讲讲一些稍微简单的算法吧. 本文来讲讲碎片算法,先贴几个效果图吧:             这是个破坏性的滤镜,拿美女来说事是因为搞图像的人90%是男人,色色的男人. 关于碎 ...

  4. linux学习(2)

    自从安装了虚拟机和各种工具软件之后,学习Linux的过程不断被打断,一直想把Ubuntu烧录到itop4412开发板里面去,却总是失败,感觉这个过程都加强我的抗打击能力了,现在来说说,对于一个第一次烧 ...

  5. 原生态ajax

    用户名是否被注册过? 创建出注册信息: <h1>注册信息</h1> <input type="text" name="txtName&quo ...

  6. Cacti -- Advance Ping

    一.搭建Cacti 1. 安装epel扩展源:yum install -y epel-release 2. 安装lamp环境:yum install -y httpd php php-mysql my ...

  7. mysql: Illegal mix of collations (utf8_unicode_ci,IMPLICIT) and (utf8_general_ci,IMPLICIT) for operation '= 的解决

    昨天把mysql里所有table的varchar字段的字符集,批量换成了utf8mb4/utf8mb4_unicode_ci ,以便能保存一些emoji火星文 , 结果有一个sql语句执行时,报错如下 ...

  8. C# Winform程序把引用的dll放到指定目录

    如果项目引用了很多dll,发布的时候放同一目录会很乱,这时候可以用privatePath后面指定搜索的dll文件夹,多个用;分隔 另外,发现在配置文件夹中 configSource 也是可以指定目录的 ...

  9. 玩蛇记--Python处理海量手机号码

    一.任务描述 上周,老板给我一个小任务:批量生成手机号码并去重.给了我一个Excel表,里面是中国移动各个地区的可用手机号码前7位(如下图),里面有十三张表,每个表里的电话号码前缀估计大概是八千个,需 ...

  10. 微信快速开发框架(七)--发送客服信息,版本更新至V2.2 代码已更新至github

    在V2版本发布的博文中,已经介绍了大多数Api的用法,同时也收到了很多意见,其中发布了几个修正版本,修改了几个bug,在此感谢大家的使用,有了大家的支持,相信快速开发框架会越来越好,也会越来越完善的. ...