题解

可以计算每一项对后面几项的贡献,然后考虑后面每一项,发现这是一个卷积,直接暴力NTT就行了,发现它是一个有后效性的,我们选择使用CDQ分治。

Tips:不能像通常CDQ分治一样直接 每次递归两边,然后处理。应该先递归左边,然后处理,再递归右边,保证右边的所有需要的转移已经被计算出来。

参考代码:

#include<bits/stdc++.h>
using namespace std;
const int maxn = 1e5+10;
const int p(998244353);
int mul(int a,int b) {
return 1LL*a*b%p;
}
int inc(int a,int b) {
a+=b;
return a>=p?a-p:a;
}
int dec(int a,int b) {
a-=b;
return a<0?a+p:a;
}
int exp(int a,int b,int p) {
if(b<0) b+=p-1;
int ret=1,base(a);
while(b) {
if(b&1) ret=mul(ret,base);
base=mul(base,base);
b>>=1;
}
return ret;
}
void dft(int *a,int n,int inv) {
for(int i = 1,j=n>>1;i<n-1;++i) {
if(i<j) swap(a[i],a[j]);
int k = n>>1;
while(j>=k) j-=k,k>>=1;
j+=k;
}
for(int j = 2;j<=n;j<<=1) {
int wn=exp(3,(p-1)/j*inv,p);
for(int i = 0;i<n;i+=j) {
int w = 1;
for(int k = i;k<i+(j>>1);++k) {
int u(a[k]),t(mul(a[k+(j>>1)],w));
a[k]=inc(u,t);
a[k+(j>>1)]=dec(u,t);
w=mul(w,wn);
}
}
}
if(inv==-1) {
int iv = exp(n,p-2,p);
for(int i =0;i<n;++i) a[i]=mul(a[i],iv);
}
}
int n;
int g[maxn<<4],f[maxn<<4],tmp[maxn<<4],tmp2[maxn<<4];
void cdqntt(int l,int r) {
if(l>r) return;
if(l==r) return;
int mid = (l+r)>>1;
cdqntt(l,mid);
int lmt = 1;
while(lmt<=2*(r-l)) lmt<<=1;
for(int i = 0;i<lmt;++i) tmp[i]=tmp2[i]=0;
for(int i = 0;i<=r-l;++i) tmp2[i]=g[i];
for(int i = l;i<=mid;++i) {
tmp[i-l+1]=f[i];
}
dft(tmp,lmt,1);dft(tmp2,lmt,1);
for(int i = 0;i<lmt;++i) tmp[i]=mul(tmp[i],tmp2[i]);
dft(tmp,lmt,-1);
for(int j = mid+1;j<=r;++j) {
f[j]=inc(f[j],tmp[j-l+1]);
}
cdqntt(mid+1,r);
}
int main() {
ios::sync_with_stdio(false);
cin.tie(0);
cout.tie(0);
cin>>n;
for(int i = 1;i<n;++i) cin>>g[i];
f[0]=1;
cdqntt(0,n-1);
for(int i = 0;i<n;++i) cout<<f[i]<<' ';
return 0;
}

【文文殿下】【洛谷】分治NTT模板的更多相关文章

  1. FFT/NTT总结+洛谷P3803 【模板】多项式乘法(FFT)(FFT/NTT)

    前言 众所周知,这两个东西都是用来算多项式乘法的. 对于这种常人思维难以理解的东西,就少些理解,多背板子吧! 因此只总结一下思路和代码,什么概念和推式子就靠巨佬们吧 推荐自为风月马前卒巨佬的概念和定理 ...

  2. 洛谷 P3377 【模板】左偏树(可并堆)

    洛谷 P3377 [模板]左偏树(可并堆) 题目描述 如题,一开始有N个小根堆,每个堆包含且仅包含一个数.接下来需要支持两种操作: 操作1: 1 x y 将第x个数和第y个数所在的小根堆合并(若第x或 ...

  3. 洛谷 P3370 【模板】字符串哈希

    洛谷 P3370 [模板]字符串哈希 题目描述 如题,给定N个字符串(第i个字符串长度为Mi,字符串内包含数字.大小写字母,大小写敏感),请求出N个字符串中共有多少个不同的字符串. 友情提醒:如果真的 ...

  4. 洛谷P3369 【模板】普通平衡树(Treap/SBT)

    洛谷P3369 [模板]普通平衡树(Treap/SBT) 平衡树,一种其妙的数据结构 题目传送门 题目描述 您需要写一种数据结构(可参考题目标题),来维护一些数,其中需要提供以下操作: 插入x数 删除 ...

  5. 洛谷P1919 【模板】A*B Problem升级版 题解(FFT的第一次实战)

    洛谷P1919 [模板]A*B Problem升级版(FFT快速傅里叶) 刚学了FFT,我们来刷一道模板题. 题目描述 给定两个长度为 n 的两个十进制数,求它们的乘积. n<=100000 如 ...

  6. 洛谷 P1439 【模板】最长公共子序列

    \[传送门啦\] 题目描述 给出\(1-n\)的两个排列\(P1\)和\(P2\),求它们的最长公共子序列. 输入输出格式 输入格式: 第一行是一个数\(n\), 接下来两行,每行为\(n\)个数,为 ...

  7. 洛谷 P1226 【模板】快速幂||取余运算

    题目链接 https://www.luogu.org/problemnew/show/P1226 题目描述 输入b,p,k的值,求b^p mod k的值.其中b,p,k*k为长整型数. 输入输出格式 ...

  8. 洛谷P3387 【模板】缩点 题解

    背景 今天\(loj\)挂了,于是就有了闲情雅致来刷\(luogu\) 题面 洛谷P3387 [模板]缩点传送门 题意 给定一个\(n\)个点\(m\)条边有向图,每个点有一个权值,求一条路径,使路径 ...

  9. 洛谷 P3919 【模板】可持久化数组(可持久化线段树/平衡树)-可持久化线段树(单点更新,单点查询)

    P3919 [模板]可持久化数组(可持久化线段树/平衡树) 题目背景 UPDATE : 最后一个点时间空间已经放大 标题即题意 有了可持久化数组,便可以实现很多衍生的可持久化功能(例如:可持久化并查集 ...

  10. 洛谷 P3384 【模板】树链剖分-树链剖分(点权)(路径节点更新、路径求和、子树节点更新、子树求和)模板-备注结合一下以前写的题目,懒得写很详细的注释

    P3384 [模板]树链剖分 题目描述 如题,已知一棵包含N个结点的树(连通且无环),每个节点上包含一个数值,需要支持以下操作: 操作1: 格式: 1 x y z 表示将树从x到y结点最短路径上所有节 ...

随机推荐

  1. 提升HTML5的性能体验系列之二 列表流畅滑动

    App的顶部一般有titlebar,下面是list.常见的一个需求是要在list滚动时,titlebar不动.这个简单的需求,实现起来其实并不简单. 在普通web上的做法是使用div的滚动条,把lis ...

  2. mybatis 的查询某个字段的特定位数(模糊查询)

    获取特定的几位:1.取url字段后三位字符 select SUBSTRING(url, -3) from link; 2.取url字段前三位字符 select SUBSTRING(url, 3) fr ...

  3. ServiceDesk Plus更有序地组织IT项目

  4. delphi 中的win32 以外到平台的字符串处理一定慢吗?(转载)

    原始连接:http://rvelthuis.blogspot.tw/2018/01/strings-on-other-platforms-than-32-bit.html Strings too sl ...

  5. 2018.11.24 poj3693Maximum repetition substring(后缀数组)

    传送门 后缀数组好题. 考虑枚举循环节长度lenlenlen. 然后考虑枚举循环节的起点来更新答案. 但是直接枚举每次O(n)O(n)O(n). 考虑枚举len∗k+1len*k+1len∗k+1作为 ...

  6. PC Access的使用

    需要copy xxx.dll  到windows/syswow64 目录下 运行com注册 启动电脑后,自动锁定(在启动目录下架锁定程序) using System; using System.Col ...

  7. RNN文章总结

    1.RNN  基本结构类型 2. RNN 3.零基础入门深度学习(5) - 循环神经网络 4.

  8. maven使用中遇到的问题

    一>手动将jar包安装到仓库的命令示例: 首先:编写命令:mvn install:install-file -Dfile=D:\lucene-highlighter-4.10.2.jar -Dg ...

  9. php 微信登录 公众号 获取用户信息 微信网页授权

    php 微信登录 公众号 获取用户信息 微信网页授权 先自己建立两个文件: index.php  和  getUserInfo.php index.php <?php //scope=snsap ...

  10. ajax 简单实例

    <!DOCTYPE html> <html> <head> <meta charset="utf-8"> <script> ...