F. st-Spanning Tree

题目连接:

http://codeforces.com/contest/723/problem/F

Description

You are given an undirected connected graph consisting of n vertices and m edges. There are no loops and no multiple edges in the graph.

You are also given two distinct vertices s and t, and two values ds and dt. Your task is to build any spanning tree of the given graph (note that the graph is not weighted), such that the degree of the vertex s doesn't exceed ds, and the degree of the vertex t doesn't exceed dt, or determine, that there is no such spanning tree.

The spanning tree of the graph G is a subgraph which is a tree and contains all vertices of the graph G. In other words, it is a connected graph which contains n - 1 edges and can be obtained by removing some of the edges from G.

The degree of a vertex is the number of edges incident to this vertex.

Input

The first line of the input contains two integers n and m (2 ≤ n ≤ 200 000, 1 ≤ m ≤ min(400 000, n·(n - 1) / 2)) — the number of vertices and the number of edges in the graph.

The next m lines contain the descriptions of the graph's edges. Each of the lines contains two integers u and v (1 ≤ u, v ≤ n, u ≠ v) — the ends of the corresponding edge. It is guaranteed that the graph contains no loops and no multiple edges and that it is connected.

The last line contains four integers s, t, ds, dt (1 ≤ s, t ≤ n, s ≠ t, 1 ≤ ds, dt ≤ n - 1).

Output

If the answer doesn't exist print "No" (without quotes) in the only line of the output.

Otherwise, in the first line print "Yes" (without quotes). In the each of the next (n - 1) lines print two integers — the description of the edges of the spanning tree. Each of the edges of the spanning tree must be printed exactly once.

You can output edges in any order. You can output the ends of each edge in any order.

If there are several solutions, print any of them.

Sample Input

3 3

1 2

2 3

3 1

1 2 1 1

Sample Output

Yes

3 2

1 3

Hint

题意

给你一个无向图,问你能不能找到一颗生成树,使得这个生成树包含S点和T点,且S点的度数不超过DS,T点的度数不超过DT

题解:

我们首先把S点和T点都拿走,然后跑一个生成树,那么现在的图就是一个森林了。

首先我们让S和T都连到同一个连通块去。

然后再贪心的去连,S优先连T不能够连接的连通块,再让T连接S不能连接的连通块,再去连接都能够连接的连通块。

其实感觉上是一个乱搞题[二哈]

代码

#include<bits/stdc++.h>
using namespace std;
const int maxn = 2e5+7;
vector<pair<int,int> >ans;
vector<int>E[maxn];
int s,t,ds,dt,fa[maxn],vis[maxn],n,m,link1[maxn],link2[maxn];
vector<int> c;
int fi(int x)
{
return fa[x]==x?x:fa[x]=fi(fa[x]);
}
void uni(int x,int y)
{
x=fi(x),y=fi(y);
fa[x]=y;
}
int main()
{
scanf("%d%d",&n,&m);
for(int i=1;i<=m;i++)
{
int x,y;
scanf("%d%d",&x,&y);
E[x].push_back(y);
E[y].push_back(x);
}
for(int i=1;i<=n;i++)
fa[i]=i;
scanf("%d%d%d%d",&s,&t,&ds,&dt);
for(int i=1;i<=n;i++)
{
if(i==s||i==t)continue;
for(int j=0;j<E[i].size();j++)
{
int v=E[i][j];
if(v==s||v==t)continue;
if(fi(i)!=fi(v))
{
ans.push_back(make_pair(i,v));
uni(i,v);
}
}
}
int flag = 0;
for(int i=0;i<E[s].size();i++)
{
int v=E[s][i];
link1[fi(E[s][i])]=1;
}
for(int i=0;i<E[t].size();i++)
{
int v=E[t][i];
link2[fi(E[t][i])]=1;
}
if(!flag)
{
for(int i=0;i<E[t].size();i++)
{
int v=E[t][i];
if(link1[fi(v)])
{
vis[fi(v)]=1;
dt--;
ans.push_back(make_pair(t,v));
uni(t,v);
break;
}
}
for(int i=0;i<E[s].size();i++)
{
int v=E[s][i];
if(vis[v])
{
ds--;
ans.push_back(make_pair(s,v));
uni(s,v);
break;
}
}
}
for(int i=0;i<E[s].size();i++)
{
if(!link2[E[s][i]]&&ds&&fi(s)!=fi(E[s][i]))
{
ans.push_back(make_pair(s,E[s][i]));
uni(s,E[s][i]);
ds--;
}
}
for(int i=0;i<E[t].size();i++)
{
if(!link1[E[t][i]]&&dt&&fi(t)!=fi(E[t][i]))
{
ans.push_back(make_pair(t,E[t][i]));
uni(t,E[t][i]);
dt--;
}
}
for(int i=0;i<E[s].size();i++)
{
if(ds&&fi(s)!=fi(E[s][i]))
{
ans.push_back(make_pair(s,E[s][i]));
uni(s,E[s][i]);
ds--;
}
}
for(int i=0;i<E[t].size();i++)
{
if(dt&&fi(t)!=fi(E[t][i]))
{
ans.push_back(make_pair(t,E[t][i]));
uni(t,E[t][i]);
dt--;
}
}
if(fi(s)!=fi(t))
{
for(int i=0;i<E[s].size();i++)
{
if(E[s][i]==t)
{
uni(s,t);
ans.push_back(make_pair(s,t));
}
}
}
if(ans.size()==n-1)
{
cout<<"Yes"<<endl;
for(int i=0;i<ans.size();i++)
cout<<ans[i].first<<" "<<ans[i].second<<endl;
}
else
cout<<"No"<<endl;
}

Codeforces Round #375 (Div. 2) F. st-Spanning Tree 生成树的更多相关文章

  1. Codeforces Round #375 (Div. 2) F. st-Spanning Tree

    传送门 分析:构造题.可以这么想:先把s,t两个点去掉,把剩下的点先并查集合并.这样会出现个集合:, , 个剩余集合.那么个集合中先把只能与或中一个相连的连起来,如果这样已经超出了要求,那么就不能构造 ...

  2. Codeforces Round #486 (Div. 3) F. Rain and Umbrellas

    Codeforces Round #486 (Div. 3) F. Rain and Umbrellas 题目连接: http://codeforces.com/group/T0ITBvoeEx/co ...

  3. Codeforces Round #485 (Div. 2) F. AND Graph

    Codeforces Round #485 (Div. 2) F. AND Graph 题目连接: http://codeforces.com/contest/987/problem/F Descri ...

  4. Codeforces Round #501 (Div. 3) F. Bracket Substring

    题目链接 Codeforces Round #501 (Div. 3) F. Bracket Substring 题解 官方题解 http://codeforces.com/blog/entry/60 ...

  5. Codeforces Round #499 (Div. 1) F. Tree

    Codeforces Round #499 (Div. 1) F. Tree 题目链接 \(\rm CodeForces\):https://codeforces.com/contest/1010/p ...

  6. Codeforces Round #271 (Div. 2) F. Ant colony (RMQ or 线段树)

    题目链接:http://codeforces.com/contest/474/problem/F 题意简而言之就是问你区间l到r之间有多少个数能整除区间内除了这个数的其他的数,然后区间长度减去数的个数 ...

  7. Codeforces Round #538 (Div. 2) F 欧拉函数 + 区间修改线段树

    https://codeforces.com/contest/1114/problem/F 欧拉函数 + 区间更新线段树 题意 对一个序列(n<=4e5,a[i]<=300)两种操作: 1 ...

  8. Codeforces Round #524 (Div. 2) F. Katya and Segments Sets(主席树)

    https://codeforces.com/contest/1080/problem/F 题意 有k个区间,区间的种类有n种,有m个询问(n,m<=1e5,k<=3e5),每次询问a,b ...

  9. Codeforces Round #525 (Div. 2) F. Ehab and a weird weight formula

    F. Ehab and a weird weight formula 题目链接:https://codeforces.com/contest/1088/problem/F 题意: 给出一颗点有权值的树 ...

随机推荐

  1. bzoj千题计划174:bzoj1800: [Ahoi2009]fly 飞行棋

    http://www.lydsy.com/JudgeOnline/problem.php?id=1800 圆上两条直径构成矩形的对角线 #include<cstdio> using nam ...

  2. lua元表详解

    元表的作用 元表是用来定义对table或userdata操作方式的表 举个例子 local t1 = {1} local t2 = {2} local t3 = t1 + t2 我们直接对两个tabl ...

  3. docker重新安装后无法启动

    问题描述: docker版本升级或者重新安装后,无法启动服务,出现如下报错: level=error msg="[graphdriver] prior storage driver over ...

  4. HTTP 错误 404.0 - Not Found

    当网上的那些修改程序池的方法,无法解决此问题时,可以尝试修改以下的参数: 1.控制面板-->程序-->启用或关闭Windows功能--> Internet Information S ...

  5. 转载 python多重继承C3算法

    备注:O==object 2.python-C3算法解析: #C3 定义引用开始 C3 算法:MRO是一个有序列表L,在类被创建时就计算出来. L(Child(Base1,Base2)) = [ Ch ...

  6. Hibernate5总结

    1. 明确Hibernate是一个实现了ORM思想的框架,它封装了JDBC,是程序员可以用对象编程思想来操作数据库. 2. 明确ORM(对象关系映射)是一种思想,JPA(Java Persistenc ...

  7. oracel 复制A列的内容到列

    update jieguo1 t set t.chinesetablename =t.tablezhushi where length(t.chinesetablename) >= 15 and ...

  8. jdk1.8源码Synchronized及其实现原理

    一.Synchronized的基本使用 关于Synchronized在JVM的原理(偏向锁,轻量级锁,重量级锁)可以参考 :  http://www.cnblogs.com/dennyzhangdd/ ...

  9. oracle 级联查询 根路径

    级联查询有很多教程示例,但是没有找到求特定子孙到根的路径的例子,折腾了一番总算想出方法了. 现假设我们拥有一个菜单表t_menu,其中只有三个字段:id.name和parent_id.它们是具有父子关 ...

  10. screen命令记录

    1.screen -x 进入 2.ctrl+a+n 下一个 3.ctrl+a+p 上一个任务 4.ctrl+a+d 退出 5.ctrl+c 结束任务 其他 screen -ls 所有任务 screen ...