BZOJ.1901.Dynamic Rankings(整体二分)
(以下是口胡)
对于多组的询问、修改,我们可以发现:
假设有对p1,p2,p3...的询问,在这之前有对p0的修改(比如+1),且p0<=p1,p2,p3...,那么我们可以在修改完p0后对p1,p2,p3...这些询问更改(比如需求-1),以后对于p1,p2,p3...都不需要管这个修改了。
这样每次需要操作的序列长度只与当前区间有关。
而这个p0我们通过二分确定。不断根据p0将操作划分为两部分(两个队列),当二分到底时(l==r),队列里所有询问的答案就是l了。
复杂度\(O(nlog^2n)\)。
洛谷Rank1 BZOJ Rank4,常数还不错吧。
[Update] 19.4.5:BZOJ Rank1了。
//2400kb 152ms
//40ms 2.52MB
#include <cstdio>
#include <cctype>
#include <algorithm>
//#define gc() getchar()
#define MAXIN 50000
#define gc() (SS==TT&&(TT=(SS=IN)+fread(IN,1,MAXIN,stdin),SS==TT)?EOF:*SS++)
#define lb(x) (x&-x)
const int N=10005,M=N*3,INF=1e9;
int n,m,Q,A[N],Ans[N];
char IN[MAXIN],*SS=IN,*TT=IN;
struct Operation
{
int K,l,r,pos;//K(opt)!=0:Query [l,r]:K; K(opt)=0:Modify 即将要改的数是l,贡献值为r,下标为pos
Operation() {}
Operation(int K,int l,int r,int pos):K(K),l(l),r(r),pos(pos) {}
}q[M],q1[M],q2[M];
inline int read()
{
int now=0,f=1;register char c=gc();
for(;!isdigit(c);c=='-'&&(f=-1),c=gc());
for(;isdigit(c);now=now*10+c-'0',c=gc());
return now*f;
}
inline bool Is_Query()
{
register char c=gc();
while(c!='Q'&&c!='C') c=gc();
return c=='Q';
}
namespace T
{
int n,t[N];
inline void Modify(int p,int v){
while(p<=n) t[p]+=v, p+=lb(p);
}
inline int Query(int p){
int res=0; while(p) res+=t[p], p-=lb(p);
return res;
}
inline void Clear(int p){
while(p<=n && t[p]) t[p]=0, p+=lb(p);
}
}
void Solve(int l,int r,int h,int t)
{
if(h>t /*|| l>r*/) return;
if(l==r){
for(int i=h; i<=t; ++i) if(q[i].K) Ans[q[i].pos]=l;
return;
}
bool goon=0;
for(int i=h; i<=t; ++i) if(q[i].K) {goon=1; break;}
if(!goon) return;
int mid=l+r>>1, t1=0, t2=0;
for(int i=h; i<=t; ++i)
if(q[i].K)//Query
{
int tmp=T::Query(q[i].r)-T::Query(q[i].l-1);
if(tmp>=q[i].K) q1[t1++]=q[i];
else q[i].K-=tmp, q2[t2++]=q[i];
}
else
{
if(q[i].l<=mid) q1[t1++]=q[i], T::Modify(q[i].pos,q[i].r);
else q2[t2++]=q[i];
}
for(int i=0; i<t1; ++i) if(!q1[i].K) T::Clear(q1[i].pos);
for(int i=0; i<t1; ++i) q[h+i]=q1[i];
for(int i=0; i<t2; ++i) q[h+t1+i]=q2[i];
Solve(l,mid,h,h+t1-1), Solve(mid+1,r,h+t1,t);
}
int main()
{
n=read(), m=read(), Q=n; int mn=INF, mx=-INF;
for(int i=1; i<=n; ++i) q[i]=Operation(0,A[i]=read(),1,i), mn=std::min(mn,A[i]), mx=std::max(mx,A[i]);
int tot=0;
for(int l,r,p,i=1; i<=m; ++i)
{
if(Is_Query()) l=read(), r=read(), q[++Q]=Operation(read(),l,r,++tot);
else p=read(), q[++Q]=Operation(0,A[p],-1,p), q[++Q]=Operation(0,A[p]=read(),1,p), mn=std::min(mn,A[p]), mx=std::max(mx,A[p]);
}
T::n=n, Solve(mn,mx,1,Q);
for(int i=1; i<=tot; ++i) printf("%d\n",Ans[i]);
return 0;
}
19.4.5
//2740kb 132ms
//原数列的值,要在树状数组上减掉啊。
#include <cstdio>
#include <cctype>
#include <algorithm>
//#define gc() getchar()
#define MAXIN 400000
#define gc() (SS==TT&&(TT=(SS=IN)+fread(IN,1,MAXIN,stdin),SS==TT)?EOF:*SS++)
typedef long long LL;
const int N=1e5+5,M=N*3;
int A[N],Ans[N];
char IN[MAXIN],*SS=IN,*TT=IN;
struct Operation
{
int l,r,k,id;//id=0:A[l]=r 变化量为k
}q[M];
struct BIT
{
int n,t[N];
#define lb(x) (x&-x)
inline void Add(int p,int v)
{
for(; p<=n; p+=lb(p)) t[p]+=v;
}
inline int Query(int p)
{
int res=0;
for(; p; p^=lb(p)) res+=t[p];
return res;
}
inline void Clear(int p)
{
for(; p<=n&&t[p]; p+=lb(p)) t[p]=0;
}
}T;
inline int read()
{
int now=0;register char c=gc();
for(;!isdigit(c);c=gc());
for(;isdigit(c);now=now*10+c-48,c=gc());
return now;
}
inline char GetOpt()
{
register char c=gc(); while(c!='Q'&&c!='C') c=gc();
return c;
}
void Solve(int l,int r,int h,int t)
{
static Operation q1[M],q2[M];
if(h>t) return;
if(l==r)
{
for(int i=h; i<=t; ++i) Ans[q[i].id]=l;
return;
}
bool fg=0;
for(int i=h; i<=t; ++i) if(q[i].id) {fg=1; break;}
if(!fg) return;
int m=l+r>>1,t1=0,t2=0;
for(int i=h; i<=t; ++i)
if(q[i].id)
{
int tmp=T.Query(q[i].r)-T.Query(q[i].l-1);
if(tmp>=q[i].k) q1[t1++]=q[i];
else q[i].k-=tmp, q2[t2++]=q[i];
}
else if(q[i].r<=m) T.Add(q[i].l,q[i].k), q1[t1++]=q[i];
else q2[t2++]=q[i];
for(int i=h; i<=t; ++i) if(!q[i].id&&q[i].r<=m) T.Clear(q[i].l);
for(int i=h,p=0; p<t1; q[i++]=q1[p++]);
for(int i=h+t1,p=0; p<t2; q[i++]=q2[p++]);
Solve(l,m,h,h+t1-1), Solve(m+1,r,h+t1,t);
}
int main()
{
int n=read(),Q=read(),tot=0,now=n,mn=1e9,mx=0;
for(int i=1; i<=n; ++i) q[i]=(Operation){i,A[i]=read(),1,0},mx=std::max(mx,A[i]),mn=std::min(mn,A[i]);
for(int i=1,p; i<=Q; ++i)
if(GetOpt()=='Q') q[++now]=(Operation){read(),read(),read(),++tot};
else p=read(),q[++now]=(Operation){p,A[p],-1,0},q[++now]=(Operation){p,A[p]=read(),1,0},mx=std::max(mx,A[p]),mn=std::min(mn,A[p]);//修改原数列!
T.n=n, Solve(mn,mx,1,now);
for(int i=1; i<=tot; ++i) printf("%d\n",Ans[i]);
return 0;
}
BZOJ.1901.Dynamic Rankings(整体二分)的更多相关文章
- BZOJ 1901 Dynamic Rankings (整体二分+树状数组)
题目大意:略 洛谷传送门 这道题在洛谷上数据比较强 貌似这个题比较常见的写法是树状数组套主席树,动态修改 我写的是整体二分 一开始的序列全都视为插入 对于修改操作,把它拆分成插入和删除两个操作 像$C ...
- BZOJ 1901 Zju2112 Dynamic Rankings ——整体二分
[题目分析] 上次用树状数组套主席树做的,这次用整体二分去水. 把所有的查询的结果一起进行二分,思路很好. [代码] #include <cstdio> #include <cstr ...
- [bzoj1901][zoj2112][Dynamic Rankings] (整体二分+树状数组 or 动态开点线段树 or 主席树)
Dynamic Rankings Time Limit: 10 Seconds Memory Limit: 32768 KB The Company Dynamic Rankings has ...
- 【BZOJ1901】Dynamic Rankings [整体二分]
Dynamic Rankings Time Limit: 10 Sec Memory Limit: 128 MB[Submit][Status][Discuss] Description 给定一个含 ...
- BZOJ.1901.Dynamic Rankings(线段树套平衡树 Splay)
题目链接or Here 题意:n个数,有两个操作:1.修改某个数为v:2.询问一段区间第k小的数 如果没有修改,则可以用线段树,每个节点P[a,b]存储大小为b-a+1的数组,代表其中的数 同时,这个 ...
- BZOJ.1901.Dynamic Rankings(树状数组套主席树(动态主席树))
题目链接 BZOJ 洛谷 区间第k小,我们可以想到主席树.然而这是静态的,怎么支持修改? 静态的主席树是利用前缀和+差分来求解的,那么对于每个位置上的每棵树看做一个点,拿树状数组更新. 还是树状数组的 ...
- bzoj 1901 Dynamic Rankings (树状数组套线段树)
1901: Zju2112 Dynamic Rankings Time Limit: 10 Sec Memory Limit: 128 MB Description 给定一个含有n个数的序列a[1] ...
- [BZOJ 1901] Dynamic Rankings 【树状数组套线段树 || 线段树套线段树】
题目链接:BZOJ - 1901 题目分析 树状数组套线段树或线段树套线段树都可以解决这道题. 第一层是区间,第二层是权值. 空间复杂度和时间复杂度均为 O(n log^2 n). 线段树比树状数组麻 ...
- [BZOJ 1901] Dynamic Rankings
Link: BZOJ 1901 传送门 Solution: 带修改主席树的模板题 对于静态区间第$k$大直接上主席树就行了 但加上修改后会发现修改时复杂度不满足要求了: 去掉/增加第$i$位上的值时要 ...
随机推荐
- 在android手机上通过Html5Plus调用java类。
关于html5plus的资料参考http://www.html5plus.org/ 最近通过html5做手机app,其中涉及到网络通过,必须采用原生的socket,websocket无法满足要求,ht ...
- bzoj千题计划231:bzoj1997: [Hnoi2010]Planar
http://www.lydsy.com/JudgeOnline/problem.php?id=1997 如果两条边在环内相交,那么一定也在环外相交 所以环内相交的两条边,必须一条在环内,一条在环外 ...
- AngularJs -- 内置指令
AngularJS提供了一系列内置指令.其中一些指令重载了原生的HTML元素,比如<form>和<a>标签, 当在HTML中使用标签时,并不一定能明确看出是否在使用指令. 其他 ...
- MacOS 下提示APP 损坏 无法安装 解决方法
sudo spctl --master-disable
- /etc/sysctl.conf 调优 & 优化Linux内核参数
from: http://apps.hi.baidu.com/share/detail/15652067 http://keyknight.blog.163.com/blog/static/36637 ...
- 你会使用super()吗?你确定你了解它吗?
我们经常在类的继承当中使用super(), 来调用父类中的方法.例如下面: class A: def func(self): print('OldBoy') class B(A): def func( ...
- webpack2.0学习
1.进到指定的目录下,新建自己的文件名 mkdir webpack-test 创建你的项目名称或者你己有的项目名称cd webpack-test npm initnpm install webpack ...
- Ocelot + IdentityServer4 构建 GateWay
上一篇已经构建好了例子,接下来将IdentityServer4添加到Ocelot中去实现 配置一个客户端配置,可以构建一个简单的客户端信息,这里我用的混合模式,配置比较多,对于客户端模式而言实际很多都 ...
- CF 554B 找相同行
给定一个由n*n块地砖铺成的房间,每块砖用0表示未打扫,1表示已打扫. 要求打扫时只能整列地扫,未打扫的会变为已打扫,已打扫的会变为未打扫.即1会变成0,而0会变成1,目标是 使最后整行为1的行数最大 ...
- Java中的String问题
方式一:String a = “aaa” ; 方式二:String b = new String(“aaa”); 两种方式都能创建字符串对象,但方式一要比方式二更优.因为字符串是保存在常量池中的,而通 ...