Ⅳ.Catalan数

//include<AC自动机>
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<string>
int f[];
using namespace std;
int main()
{
int n;
cin>>n;
f[]=;
f[]=;
for(int i=;i<=n;++i)
{
for(int j=;j<=n-;j++)
{
f[i]=f[j]*f[i-j+]+f[i];
}
}
cout<<f[n];
return ;
}
Ⅳ.Catalan数的更多相关文章
- Catalan数应用整理
应用一: codevs 3112 二叉树计数 时间限制: 1 s 空间限制: 128000 KB 题目等级 : 黄金 Gold 题目描述 Description 一个有n个结点的二叉树总共有 ...
- 【64测试20161112】【Catalan数】【数论】【扩展欧几里得】【逆】
Problem: n个人(偶数)排队,排两行,每一行的身高依次递增,且第二行的人的身高大于对应的第一行的人,问有多少种方案.mod 1e9+9 Solution: 这道题由1,2,5,14 应该想到C ...
- Catalan数(数论)
Catalan数 [参考网址]http://www.cnblogs.com/gongxijun/p/3232682.html 记得当时我们队写过一个,差点超时,现在找到了公式,感觉还是挺简单的. 还要 ...
- Catalan数 && 【NOIP2003】出栈序列统计
令h(1)=1, h(0)=1,catalan数满足递归式: h(n)=h(0)*h(n-1)+h(1)*h(n-2)+...+h(n-1)h(0) (n>=2) =C(2n, n)/(n+1) ...
- Catalan数
先看2个问题: 问题一: n个元素进栈(栈无穷大),进栈顺序为1,2,3,....n,那么有多少种出栈顺序? 先从简单的入手:n=1,当然只有1种:n=2,可以是1,2 也可以是2,1:那么有2种: ...
- catalan数及笔试面试里那些相关的问题(转)
一.catalan数由来和性质 1)由来 catalan数(卡塔兰数)取自组合数学中一个常在各种计数问题中出现的数列.以比利时的数学家欧仁·查理·卡塔兰 (1814–1894)命名. 卡塔兰数的一般项 ...
- Catalan数推导(转载)
Raney引理: 设整数序列A = {Ai, i=1, 2, …, N},且部分和Sk=A1+…+Ak,序列中所有的数字的和SN=1,在A的N个循环表示中,有且仅有一个序列B,满足B的任意部分和Si均 ...
- HDU 4828 - Grids (Catalan数)
题目链接 : http://acm.hdu.edu.cn/showproblem.php?pid=4828 Catalan数的公式为 C[n+1] = C[n] * (4 * n + 2) / (n ...
- 卡特兰数 Catalan数 ( ACM 数论 组合 )
卡特兰数 Catalan数 ( ACM 数论 组合 ) Posted on 2010-08-07 21:51 MiYu 阅读(13170) 评论(1) 编辑 收藏 引用 所属分类: ACM ( 数论 ...
- 12个高矮不同的人,排成两排(catalan数)
问题描述: 12个高矮不同的人,排成两排,每排必须是从矮到高排列,而且第二排比对应的第一排的人高,问排列方式有多少种? 这个笔试题,很YD,因为把某个递归关系隐藏得很深. 问题分析: 我们先把这12个 ...
随机推荐
- 网络技术之TCP三次握手
在TCP/IP协议中,TCP协议提供可靠的连接服务,采用三次握手方式建立一个连接 第一次握手:c->s 建立连接时,客户端发送SYN包(syn=j){注:syn:Synchronize Sequ ...
- LFS、BLFS、ALFS、HLFS的区别
转自:http://www.ha97.com/3927.html Linux From Scratch (LFS) 及其后代代表一种新方法,向用户揭示 Linux 操作系统是如何工作的.LFS 基于这 ...
- bzoj千题计划296:bzoj1053: [HAOI2007]反素数ant
http://www.lydsy.com/JudgeOnline/problem.php?id=1053 求n以内约数个数最多的数 #include<cstdio> using names ...
- 【51Nod】1920 空间统计学 状压DP
[题目]1920 空间统计学 [题意]给定m维空间中的n个点坐标,满足每一维坐标大小都在[0,3]之间,现在对于[0,3*m]的每个数字x统计曼哈顿距离为x的有序点对数.\(n \leq 2*10^5 ...
- Python 装饰器入门(下)
继续上次的进度:https://www.cnblogs.com/flashBoxer/p/9847521.html 正文: 装饰类 在类中有两种不通的方式使用装饰器,第一个和我们之前做过的函数非常相似 ...
- [转]linux各文件夹介绍
本文来自linux各文件夹的作用的一个精简版,作为个人使用笔记. 下面简单看下linux下的文件结构,看看每个文件夹都是干吗用的? /bin 二进制可执行命令 /dev 设备特殊文件 /etc 系统管 ...
- 乘法逆元(P3811)(四种方法)
适合单个的,费马小定理,exgcd,都是不错的选择,利用积性函数的方法和欧拉筛的方法适合批量求,但是论时间和空间的话,还是积性函数的方法比较好用,线性的. 题目链接:https://www.luogu ...
- Dream------Hadoop--网络拓扑与Hadoop--摘抄
两个节点在一个本地网络中被称为“彼此的近邻”是什么意思?在高容量数据处理中,限制因素是我们在节点间 传送数据的速率-----带宽很稀缺.这个想法便是将两个节点间的带宽作为距离的衡量标准. 衡量节点 ...
- Interval Sum I && II
Given an integer array (index from 0 to n-1, where n is the size of this array), and an query list. ...
- [cookie篇]cookie-parser之parser.js
cookie-parser的作用,官方的说法是:Parse Cookie header and populate req.cookies with an object keyed by the coo ...