POJ3694(KB9-D 割边+LCA)
Network
| Time Limit: 5000MS | Memory Limit: 65536K | |
| Total Submissions: 10371 | Accepted: 3853 |
Description
A network administrator manages a large network. The network consists of N computers and M links between pairs of computers. Any pair of computers are connected directly or indirectly by successive links, so data can be transformed between any two computers. The administrator finds that some links are vital to the network, because failure of any one of them can cause that data can't be transformed between some computers. He call such a link a bridge. He is planning to add some new links one by one to eliminate all bridges.
You are to help the administrator by reporting the number of bridges in the network after each new link is added.
Input
The input consists of multiple test cases. Each test case starts with a line containing two integers N(1 ≤ N ≤ 100,000) and M(N - 1 ≤ M ≤ 200,000).
Each of the following M lines contains two integers A and B ( 1≤ A ≠ B ≤ N), which indicates a link between computer A and B. Computers are numbered from 1 to N. It is guaranteed that any two computers are connected in the initial network.
The next line contains a single integer Q ( 1 ≤ Q ≤ 1,000), which is the number of new links the administrator plans to add to the network one by one.
The i-th line of the following Q lines contains two integer A and B (1 ≤ A ≠ B ≤ N), which is the i-th added new link connecting computer A and B.
The last test case is followed by a line containing two zeros.
Output
For each test case, print a line containing the test case number( beginning with 1) and Q lines, the i-th of which contains a integer indicating the number of bridges in the network after the first i new links are added. Print a blank line after the output for each test case.
Sample Input
3 2
1 2
2 3
2
1 2
1 3
4 4
1 2
2 1
2 3
1 4
2
1 2
3 4
0 0
Sample Output
Case 1:
1
0
Case 2:
2
0
Source
割边:在连通图中,删除了连通图的某条边后,图不再连通。这样的边被称为割边,也叫做桥。
割点:在连通图中,删除了连通图的某个点以及与这个点相连的边后,图不再连通。这样的点被称为割点。
DFS搜索树:用DFS对图进行遍历时,按照遍历次序的不同,我们可以得到一棵DFS搜索树。

树边:在搜索树中的蓝色线所示,可理解为在DFS过程中访问未访问节点时所经过的边,也称为父子边
回边:在搜索树中的橙色线所示,可理解为在DFS过程中遇到已访问节点时所经过的边,也称为返祖边、后向边
观察DFS搜索树,我们可以发现有两类节点可以成为割点。对根节点u,若其有两棵或两棵以上的子树,则该根结点u为割点;对非叶子节点u(非根节点),若其中的某棵子树的节点均没有指向u的祖先节点的回边,说明删除u之后,根结点与该棵子树的节点不再连通;则节点u为割点。对于根结点,显然很好处理;但是对于非叶子节点,怎么去判断有没有回边是一个值得深思的问题。我们用dfn[u]记录节点u在DFS过程中被遍历到的次序号,low[u]记录节点u或u的子树通过非父子边追溯到最早的祖先节点(即DFS次序号最小),那么low[u]的计算过程如下。

对于给的例子,其求出的dfn和low数组如下。
id 123456
dfn 123456
low 111444
可以发现,对于情况2,当(u,v)为树边且low[v]≥dfn[u]时,节点u才为割点。而当(u,v)为树边且low[v]>dfn[u]时,表示v节点只能通过该边(u,v)与u连通,那么(u,v)即为割边。tarjan算法的时间复杂度是O(n+m)的,非常快。
题意:给出一幅无向图,然后进行加边,每加一条边,询问图中割边的数量
思路:每次加边,把u-v-lca(u,v)-u这个环上的割边减掉。
//2017-08-20
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm> using namespace std; const int N = ;
const int M = ;
int head[N], tot;
struct Edge{
int to, next;
}edge[M<<]; void init(){
tot = ;
memset(head, -, sizeof(head));
} void add_edge(int u, int v){
edge[tot].to = v;
edge[tot].next = head[u];
head[u] = tot++; edge[tot].to = u;
edge[tot].next = head[v];
head[v] = tot++;
} int n, m, deep, ans;
int dfn[N];//dfn[u]记录节点u在DFS过程中被遍历到的次序号
int low[N]; //low[u]记录节点u或u的子树通过非父子边追溯到最早的祖先节点(即DFS次序号最小)
int fa[N];//保存dfs树的信息
int level[N];//记录节点在dfs树中的深度
int bridge[N];//记录割边,若bridge[u] == 1, 则<u, fa[u]>为一条割边 void tarjan(int u, int father){
fa[u] = father;
dfn[u] = low[u] = deep++;
level[u] = level[father]+;
for(int i = head[u]; i != -; i = edge[i].next){
int v = edge[i].to;
if(dfn[v] == -){
tarjan(v, u);
low[u] = min(low[u], low[v]);
if(low[v] > dfn[u]){
bridge[v] = ;
ans++;
}
}else if(v != father)
low[u] = min(low[u], dfn[v]);
}
} void lca(int a, int b){
while(level[a] > level[b]){
if(bridge[a]){
ans--;
bridge[a] = ;
}
a = fa[a];
}
while(level[b] > level[a]){
if(bridge[b]){
ans--;
bridge[b] = ;
}
b = fa[b];
}
while(a != b){
if(bridge[a]){
ans--;
bridge[a] = ;
}
if(bridge[b]){
ans--;
bridge[b] = ;
}
a = fa[a];
b = fa[b];
}
} int main()
{
//freopen("inputD.txt", "r", stdin);
int kase = ;
while(scanf("%d%d", &n, &m)!=EOF && (n || m)){
printf("Case %d:\n", ++kase);
init();
int u, v;
for(int i = ; i < m; i++){
scanf("%d%d", &u, &v);
add_edge(u, v);
}
memset(bridge, , sizeof(bridge));
memset(dfn, -, sizeof(dfn));
memset(low, , sizeof(low));
level[] = ;
deep = ;
tarjan(, );
int q;
scanf("%d", &q);
while(q--){
scanf("%d%d", &u, &v);
if(ans)lca(u, v);
printf("%d\n", ans);
}
printf("\n");
} return ;
}
POJ3694(KB9-D 割边+LCA)的更多相关文章
- poj 3694(割边+lca)
题意:给你一个无向图,可能有重边,有q次询问,问你每次我添加一条边,添加后这个图还有多少个桥 解题思路:首先先把所有没有割边的点对缩成一个联通块,无向图一般并查集判环,然后就得到一个割边树,给你一条新 ...
- POJ 3694 Network(Tarjan求割边+LCA)
Network Time Limit: 5000MS Memory Limit: 65536K Total Submissions: 10969 Accepted: 4096 Descript ...
- POJ3694 Network(连通图+LCA)
题目链接:http://poj.org/problem?id=3694 题目大意:给定一个图,每次添加一条边(可能有重边).输出每次添加后桥的 数目.由于添加边的次数比较多,添加一次Tarjin一次明 ...
- poj 3694 pku 3694 Network tarjan求割边 lca
题意:给你一个连通图,然后再给你n个询问,每个询问给一个点u,v表示加上u,v之后又多少个桥.一个最容易想到的办法就是先加边找桥,加边找桥,这样可定超时.那么就可以缩点,因为如果一条边不是桥那么无论怎 ...
- poj 3694 Network(割边+lca)
题目链接:http://poj.org/problem?id=3694 题意:一个无向图中本来有若干条桥,有Q个操作,每次加一条边(u,v),每次操作后输出桥的数目. 分析:通常的做法是:先求出该无向 ...
- POJ3694 Network【连通分量+LCA】
题意: 一个无向图可以有重边,下面q个操作,每次在两个点间连接一条有向边,每次连接后整个无向图还剩下多少桥(注意是要考虑之前连了的边,每次回答是在上一次的基础之上). 思路: 首先运行一次Tarjan ...
- Network(POJ3694+边双连通分量+LCA)
题目链接:http://poj.org/problem?id=3694 题目: 题意:给你一个n个点m条边的无向连通图,进行q次操作,每次操作在u和v之间加一条边,问每次操作之后“桥”的数量. 思路: ...
- poj3694 边-双连通分量+lca
题意:先给了一张无向图,然后依次加边,每次求桥的数量 题解:先用一次tarjan,我们可以标记桥的位置和记录桥的数量同时记录fa数组,然后更新边的时候我们可以用lca,因为在tarjan缩点之后得到了 ...
- 【POJ 3694】 Network(割边<桥>+LCA)
[POJ 3694] Network(割边+LCA) Network Time Limit: 5000MS Memory Limit: 65536K Total Submissions: 7971 ...
随机推荐
- collections, time, queue的应用
collections (克来克深思) Counter from collections import Counter # 引入模块, 计数器 Counter(康特) s = 'sadfasdfas ...
- 全世界最顶级黑客同时沸腾在DEF CON 25,是怎样一种体验?
2017,我在这里!圆你黑客梦!! 被称为黑客“世界杯”与“奥斯卡”的美国黑帽技术大会Black Hat和世界黑客大会DEF CON 是众多黑客心中最神圣的梦! 有位小表弟告诉我说:Black ...
- eclipse maven打war包
在eclipse中找到pom.xml文件右键 选择debug as 再选择Maven install运行后 按路径找到生成的war包 推荐https://www.cnblogs.com/qlqwjy/ ...
- 让PETSc跑得再快一些
最近做了一个使用PETSc来求解线性方程组(Ax=b)的项目,把其中遇到的一些坑和解决方法记录下来.本文不介绍PETSc如何入门,而是给出一些能让PETSc运行得更快的编程细节.开始我只是简单地修改P ...
- vs2017 对dockerfile的支持
项目添加 dockerfile Docker file 内容 FROM microsoft/dotnet:2.1-aspnetcore-runtime AS base WORKDIR /app EXP ...
- 设置JVM参数的几种方式解决java.lang.OutOfMemoryError:Java heap space
一.首先给出查询当前JVM内存的代码: 下面是查询当前JVM 内存大小的代码,可以测试设置后JVM 的内存是否会变化.增加JVM 内存的配置项后,无需重新启动eclipse .具体的代码如下: pub ...
- GitLab 修改主机名,更换 IP 配置,配置 SMTP
# find / -name gitlab.yml /opt/gitlab/embedded/service/gitlab-rails/config/gitlab.yml /var/opt/gitla ...
- JavaScript -- Window-Resize
-----036-Window-Resize.html----- <!DOCTYPE html> <html> <head> <meta http-equiv ...
- 高可用Hadoop平台-实战尾声篇
1.概述 今天这篇博客就是<高可用Hadoop平台>的尾声篇了,从搭建安装到入门运行 Hadoop 版的 HelloWorld(WordCount 可以称的上是 Hadoop 版的 Hel ...
- 如何设置httpd-mpm-conf的参数
原文链接:http://blog.sina.com.cn/s/blog_626998030102wohs.html 首先确定apache是使用哪种工作模式是prefork模式还是worker模式查看方 ...