机器学习 最重要的东西就是算法   这里面的水很深  所以呢我就简单的整理了一下
基础的操作
 
 
#导入numpy库 as别名 为了怕重名
import numpy as np
# 打印版本号
print(np.version.version)
#声明一个numpy数组 ,一维数组
nlist = np.array([1,2,3])
print(nlist)
#ndim方法用来查看数组维度
print(nlist.ndim)
# 声明一个二维数组
nlist_2 = np.array([[1,2,3],[4,5,6]])
print(nlist_2)
print(nlist_2.ndim)
#使用shape属性来打印多维数组的形状
print(nlist.shape)
print(nlist_2.shape)
#使用size方法来打印多维数组的元素个数
print(np.size(nlist))
print(np.size(nlist_2))
#打印numpy多维数组的数据类型
#打印普通list
print(type([1,2,3]))
print(type(nlist))
#使用dtype属性来打印多维数组内部元素的数据类型
print(type(123))
print(nlist.dtype)
#itemsize属性,来打印多维数组中的数据类型大小,字节
print(nlist.itemsize)
print(nlist_2.itemsize)
#data属性,用来打印数据的缓冲区 buffer
print(nlist.data)
#使用reshape方法来反向生成多维数组 第一个数字是几维数组的,第二个数字是2行,第三个数字是4列
nlist_3 = np.array(range(24)).reshape((3,2,4))
nlist_4 = np.array(range(32)).reshape((4,2,4))
print(nlist_3)
print(nlist_4)
#使用浮点作为元素类型
nlist_float = np.array([1.0,2.0,3.0])
print(nlist_float.dtype)
#使用字符串
nlist_string = np.array(['1','2','3'])
print(nlist_string.dtype)
#四维数组
nlist_4 = np.array(range(20)).reshape((5,2,2,1))
print(nlist_4)
print(nlist_4.ndim)
 
#声明一个size为20的四维数组
nlist_4 = np.array(range(20)).reshape((1,2,5,2))
print(nlist_4)
#声明一个3*3的数组
nlist_33 = np.array([[1,2,3],[4,5,6],[2,3,6]])
#属性
print(nlist_33)
print(nlist_33.shape)
print(nlist_33.ndim)
print(nlist_33.size)
#方法
print(np.size(nlist_33))
print(np.shape(nlist_33))
print(np.ndim(nlist_33))
#自动生成元素为1的多维数组,使用ones方法
nlist_ones = np.ones((4,4))
print(nlist_ones)
print(nlist_ones.dtype)
#使用zeros来生成元素为0的多维数组
nlist_zeros = np.zeros((4,4))
print(nlist_zeros)
print(nlist_zeros.dtype)
#使用empty方法来生成随机多维数组 使用第二个参数来指定数据类型
nlist_empty = np.empty([2,2],dtype=np.int)
print(nlist_empty)
print(nlist_empty.dtype)
#把普通list转换为数组
x = [1,2,3]
x= [(1,2,3),(4,5)]
print(np.ndim(x))
print(np.shape(x))
print(type(x))
nlist = np.asarray(x)
print(type(nlist))
print(nlist.ndim)
print(nlist.shape)
#frombuffer 通过字符串(buffer内存地址)切片来生成多维数组
my_str = b'Hello World'
nlist_str = np.frombuffer(my_str,dtype='S1')
print(nlist_str)
x = np.array([[1,2],[3,4]])
print(x)
#指定axis属性可以指定当前多维数组的维度 axis=0 列级相加 ,keepdims=True 保持维度
sum0 = np.sum(x,axis=0,keepdims=True)
print(sum0)
# axis = 1 行级相加
sum1 = np.sum(x,axis=1,keepdims=True)
print(sum1)
#多维数组赋值
x = np.array([1,2])
y = x.copy()
y[0] = 3
# x[0] = 3
print(x)
#维度级的运算
a = np.array([[1,2],[3,4],[5,6]])
b = np.array([[10,20],[30,40],[50,60]])
#使用vstack方法 列级添加
suma = np.vstack((a,b))
print(suma)
#hstack方法 行级添加
sumb = np.hstack((a,b))
print(sumb)
#多维数组的调用
nlist = np.array([[1,2],[3,4],[5,6]])
#取元素4
print(nlist[1][1])
#第二种写法
print(nlist[1,1])
nlist[2][1] = 7
print(nlist)
#删除方法 delete
#删除nlist第二行
nlist = np.delete(nlist,1,axis=0)
print(nlist)
nlist = np.delete(nlist,0,axis=1)
print(nlist)
 
这些只是一部分基础方法和算法   
想学的精的话只能自己慢慢摸索了 ,  胜利就在前方 ,加油!!

人工智能-机器学习之numpy方法的更多相关文章

  1. 控制算法的划分(自适应控制、预测控制、模糊控制等,PID等;蚁群算法、神经网络,还有机器学习、人工智能中的很多方法)

    一般来说,控制器的设计,分为控制框架的选取,跟参数的优化.自适应控制.预测控制.模糊控制等,跟PID一样,是控制算法(我习惯称为控制框架). 而粒子群.遗传算法(类似的还有蚁群算法.神经网络,还有机器 ...

  2. KDD 2011 最佳工业论文中机器学习的实践方法-翻译

    作者:黄永刚 Practical machine learning tricks from the KDD 2011 best industry paper 原文链接:http://blog.davi ...

  3. Python 机器学习库 NumPy 教程

    0 Numpy简单介绍 Numpy是Python的一个科学计算的库,提供了矩阵运算的功能,其一般与Scipy.matplotlib一起使用.其实,list已经提供了类似于矩阵的表示形式,不过numpy ...

  4. 机器学习——打开集成方法的大门,手把手带你实现AdaBoost模型

    本文始发于个人公众号:TechFlow,原创不易,求个关注 今天是机器学习专题的第25篇文章,我们一起来聊聊AdaBoost. 我们目前为止已经学过了好几个模型,光决策树的生成算法就有三种.但是我们每 ...

  5. python最全学习资料:python基础进阶+人工智能+机器学习+神经网络(包括黑马程序员2017年12月python视频(百度云链接))

    首先用数据说话,看看资料大小,达到675G 承诺:真实资料.不加密,获取资料请加QQ:122317653 包含内容:1.python基础+进阶+应用项目实战 2.神经网络算法+python应用 3.人 ...

  6. 安装Numpy方法

    Numpy安装(要先安装好python,见<windows下的python环境搭建(python2和python3不兼容,python2用的多)>) Numpy是Python的一个科学计算 ...

  7. python学习大全:python基础进阶+人工智能+机器学习+神经网络

    首先用数据说话,看看资料大小,达到675G承诺:真实资料.不加密.(鉴于太多朋友加我QQ,我无法及时回复,) 方便的朋友给我点赞.评论下,谢谢!(内容较大,多次保存) [hide]链接:[url]ht ...

  8. 机器学习基础 --- numpy的基本使用

    一.numpy的简介 numpy是Python的一种开源的数值计算扩展库.这种工具可用来存储和处理大型矩阵,比Python自身的嵌套列表(nested list structure)结构要高效的多(该 ...

  9. numpy方法介绍

    三.numpy系列 1.np.maximum:(X, Y, out=None) X 与 Y 逐位比较取其大者: 最少接收两个参数 h=[[-2,2,10],[-5,-9,20]] hh=np.maxi ...

随机推荐

  1. Linux硬件信息命令大全

    硬件信息 在linux系统中,有很多命令可以用于查询主机的硬件信息,有些命令仅仅针对于特定的硬件部件,比如cpu,内存等,而有些命令可以查询很多的硬件信息. 这篇帖子简单地带大家了解一下最常用的查询各 ...

  2. Codeforces Round #543 (Div. 2) D 双指针 + 模拟

    https://codeforces.com/contest/1121/problem/D 题意 给你一个m(<=5e5)个数的序列,选择删除某些数,使得剩下的数按每组k个数以此分成n组(n*k ...

  3. Router components

    Input Unit The Input unit contains virtual channel buffers and an input VC arbiter. Route Info: use ...

  4. 哪些优秀的 Windows 小工具,类似 clover 或 everything

    有哪些优秀的 Windows 小工具,类似 clover 或 everything? 目前已知的有everything, listary, total commander, clover, dexpo ...

  5. div配景图片全div显示

    <div class="face-boy" style="width:86px;height:92px;background: url('/${userProfil ...

  6. js判断软键盘是否开启弹出

    移动端关于页面布局,如果底部有position:fixed的盒子,又有input,当软键盘弹出收起都会影响页面布局.这时候Android可以监听resize事件,代码如下,而ios没有相关事件. va ...

  7. c++中指针的指针和指针的引用的使用

    当指针作为函数的参数进行传递时,实际上本质上是安置传递,即将指针进行了一份拷贝,在函数的内部对这个指针的修改实际上就是对一个在函数内部的那个局部变量的修改.这点事和引用不同的,引用实际上是在参数传递时 ...

  8. Linux安装Oracle 11g Grid Infrastructure 出现OUI-10182错误解决办法

      已确保安装的ORACLE_BASE目录是属于grid:oinstall 但安装时总是报:OUI-10182 The effective user ID does not match the own ...

  9. Django-配置、静态文件与路由

    -----配置文件 1.BASE_DIR BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))   2.DEBU ...

  10. WebGIS博客文本分析(词频分析)手动扒取 去除格式 词语分割 统计分析

    1.      [置顶](一)开篇—杂谈WebGIS 摘要: 文章版权由作者李晓晖和博客园共有,若转载请于明显处标明出处:http://www.cnblogs.com/naaoveGIS/ 1.前言 ...