机器学习 最重要的东西就是算法   这里面的水很深  所以呢我就简单的整理了一下
基础的操作
 
 
#导入numpy库 as别名 为了怕重名
import numpy as np
# 打印版本号
print(np.version.version)
#声明一个numpy数组 ,一维数组
nlist = np.array([1,2,3])
print(nlist)
#ndim方法用来查看数组维度
print(nlist.ndim)
# 声明一个二维数组
nlist_2 = np.array([[1,2,3],[4,5,6]])
print(nlist_2)
print(nlist_2.ndim)
#使用shape属性来打印多维数组的形状
print(nlist.shape)
print(nlist_2.shape)
#使用size方法来打印多维数组的元素个数
print(np.size(nlist))
print(np.size(nlist_2))
#打印numpy多维数组的数据类型
#打印普通list
print(type([1,2,3]))
print(type(nlist))
#使用dtype属性来打印多维数组内部元素的数据类型
print(type(123))
print(nlist.dtype)
#itemsize属性,来打印多维数组中的数据类型大小,字节
print(nlist.itemsize)
print(nlist_2.itemsize)
#data属性,用来打印数据的缓冲区 buffer
print(nlist.data)
#使用reshape方法来反向生成多维数组 第一个数字是几维数组的,第二个数字是2行,第三个数字是4列
nlist_3 = np.array(range(24)).reshape((3,2,4))
nlist_4 = np.array(range(32)).reshape((4,2,4))
print(nlist_3)
print(nlist_4)
#使用浮点作为元素类型
nlist_float = np.array([1.0,2.0,3.0])
print(nlist_float.dtype)
#使用字符串
nlist_string = np.array(['1','2','3'])
print(nlist_string.dtype)
#四维数组
nlist_4 = np.array(range(20)).reshape((5,2,2,1))
print(nlist_4)
print(nlist_4.ndim)
 
#声明一个size为20的四维数组
nlist_4 = np.array(range(20)).reshape((1,2,5,2))
print(nlist_4)
#声明一个3*3的数组
nlist_33 = np.array([[1,2,3],[4,5,6],[2,3,6]])
#属性
print(nlist_33)
print(nlist_33.shape)
print(nlist_33.ndim)
print(nlist_33.size)
#方法
print(np.size(nlist_33))
print(np.shape(nlist_33))
print(np.ndim(nlist_33))
#自动生成元素为1的多维数组,使用ones方法
nlist_ones = np.ones((4,4))
print(nlist_ones)
print(nlist_ones.dtype)
#使用zeros来生成元素为0的多维数组
nlist_zeros = np.zeros((4,4))
print(nlist_zeros)
print(nlist_zeros.dtype)
#使用empty方法来生成随机多维数组 使用第二个参数来指定数据类型
nlist_empty = np.empty([2,2],dtype=np.int)
print(nlist_empty)
print(nlist_empty.dtype)
#把普通list转换为数组
x = [1,2,3]
x= [(1,2,3),(4,5)]
print(np.ndim(x))
print(np.shape(x))
print(type(x))
nlist = np.asarray(x)
print(type(nlist))
print(nlist.ndim)
print(nlist.shape)
#frombuffer 通过字符串(buffer内存地址)切片来生成多维数组
my_str = b'Hello World'
nlist_str = np.frombuffer(my_str,dtype='S1')
print(nlist_str)
x = np.array([[1,2],[3,4]])
print(x)
#指定axis属性可以指定当前多维数组的维度 axis=0 列级相加 ,keepdims=True 保持维度
sum0 = np.sum(x,axis=0,keepdims=True)
print(sum0)
# axis = 1 行级相加
sum1 = np.sum(x,axis=1,keepdims=True)
print(sum1)
#多维数组赋值
x = np.array([1,2])
y = x.copy()
y[0] = 3
# x[0] = 3
print(x)
#维度级的运算
a = np.array([[1,2],[3,4],[5,6]])
b = np.array([[10,20],[30,40],[50,60]])
#使用vstack方法 列级添加
suma = np.vstack((a,b))
print(suma)
#hstack方法 行级添加
sumb = np.hstack((a,b))
print(sumb)
#多维数组的调用
nlist = np.array([[1,2],[3,4],[5,6]])
#取元素4
print(nlist[1][1])
#第二种写法
print(nlist[1,1])
nlist[2][1] = 7
print(nlist)
#删除方法 delete
#删除nlist第二行
nlist = np.delete(nlist,1,axis=0)
print(nlist)
nlist = np.delete(nlist,0,axis=1)
print(nlist)
 
这些只是一部分基础方法和算法   
想学的精的话只能自己慢慢摸索了 ,  胜利就在前方 ,加油!!

人工智能-机器学习之numpy方法的更多相关文章

  1. 控制算法的划分(自适应控制、预测控制、模糊控制等,PID等;蚁群算法、神经网络,还有机器学习、人工智能中的很多方法)

    一般来说,控制器的设计,分为控制框架的选取,跟参数的优化.自适应控制.预测控制.模糊控制等,跟PID一样,是控制算法(我习惯称为控制框架). 而粒子群.遗传算法(类似的还有蚁群算法.神经网络,还有机器 ...

  2. KDD 2011 最佳工业论文中机器学习的实践方法-翻译

    作者:黄永刚 Practical machine learning tricks from the KDD 2011 best industry paper 原文链接:http://blog.davi ...

  3. Python 机器学习库 NumPy 教程

    0 Numpy简单介绍 Numpy是Python的一个科学计算的库,提供了矩阵运算的功能,其一般与Scipy.matplotlib一起使用.其实,list已经提供了类似于矩阵的表示形式,不过numpy ...

  4. 机器学习——打开集成方法的大门,手把手带你实现AdaBoost模型

    本文始发于个人公众号:TechFlow,原创不易,求个关注 今天是机器学习专题的第25篇文章,我们一起来聊聊AdaBoost. 我们目前为止已经学过了好几个模型,光决策树的生成算法就有三种.但是我们每 ...

  5. python最全学习资料:python基础进阶+人工智能+机器学习+神经网络(包括黑马程序员2017年12月python视频(百度云链接))

    首先用数据说话,看看资料大小,达到675G 承诺:真实资料.不加密,获取资料请加QQ:122317653 包含内容:1.python基础+进阶+应用项目实战 2.神经网络算法+python应用 3.人 ...

  6. 安装Numpy方法

    Numpy安装(要先安装好python,见<windows下的python环境搭建(python2和python3不兼容,python2用的多)>) Numpy是Python的一个科学计算 ...

  7. python学习大全:python基础进阶+人工智能+机器学习+神经网络

    首先用数据说话,看看资料大小,达到675G承诺:真实资料.不加密.(鉴于太多朋友加我QQ,我无法及时回复,) 方便的朋友给我点赞.评论下,谢谢!(内容较大,多次保存) [hide]链接:[url]ht ...

  8. 机器学习基础 --- numpy的基本使用

    一.numpy的简介 numpy是Python的一种开源的数值计算扩展库.这种工具可用来存储和处理大型矩阵,比Python自身的嵌套列表(nested list structure)结构要高效的多(该 ...

  9. numpy方法介绍

    三.numpy系列 1.np.maximum:(X, Y, out=None) X 与 Y 逐位比较取其大者: 最少接收两个参数 h=[[-2,2,10],[-5,-9,20]] hh=np.maxi ...

随机推荐

  1. 如何将mysql卸载干净

    一.在控制面板中卸载mysql软件 二.卸载过后删除C:\Program Files (x86)\MySQL该目录下剩余了所有文件,把mysql文件夹也删了 三.windows+R运行“regedit ...

  2. 2018.10.25 bzoj3928: [Cerc2014] Outer space invaders(区间dp)

    传送门 区间dpdpdp好题. 首先肯定需要把坐标离散化. 然后在数轴上面区间dpdpdp. 对于当前区间,区间中最大的数一定会被选. 于是我们记f[i,j]f[i,j]f[i,j]表示所有左端点在i ...

  3. jQuery动态控制下拉列表的被选项[转]

    <form id="form" action="/query!query.action"> <select> <option va ...

  4. Methods to reduce the number of pipeline stages

    Several techniques have been proposed to reduce the number of pipeline stages. We categorize them in ...

  5. java常用设计模式四:观察者模式

    1.定义 观察者模式定义了一种一对多的依赖关系,让多个观察者对象同时监听某一主题对象.这个主题对象在状态发生变化时,会通知所有观察者对象,使它们能够自动更新自己.观察者模式又叫发布-订阅(Publis ...

  6. DocumentFragment类型

    nodeType 11 nodeName #document-fragment nodeValue NULL parentNode null createdocumentfragment()方法创建了 ...

  7. jquery取消事件冒泡的三种方法展示

    jquery取消事件冒泡的三种方法展示 html代码 <!doctype html> <html> <head> <meta charset="ut ...

  8. (转第二方案)在 ASP.NET 環境下使用 Memcached 快速上手指南

    转自:http://blog.miniasp.com/post/2010/01/27/Memcached-for-ASPNET-Quick-Start-Guide.aspx 之前一直想研究 Memca ...

  9. 让页面整体变灰css设置

    上次看到某人去世了,百度就把相应介绍某人的信息页面全部灰掉,于是寻找到了种简单的方法,只需设置html html { filter: grayscale(100%); -webkit-filter: ...

  10. C语言中:static与extern对变量和函数的作用

    1.两者对全局变量 static对全局变量,表示定义一个内部变量 extern对全局变量,表示声明一个外部变量 说明: 1.内部变量:定义的变量只能在本文件中访问,不能被其他文件访问. 2.不同文件中 ...