1 Introduction

  GANs由两个模型组成:生成器和鉴别器。生成器试图捕获真实示例的分布,以便生成新的数据样本。鉴别器通常是一个二值分类器,尽可能准确地将生成样本与真实样本区分开来。GANs的优化问题是一个极大极小优化问题。优化终止于相对于生成器的最小值和相对于鉴别器的最大值的鞍点。

2.1 Generative algorithms

  生成算法可分为两类:显式密度模型和隐式密度模型。

2.1,1 Explicit density model

  显式密度模型假设分布,利用真实数据训练包含分布或拟合分布参数的模型。完成后,使用所学习的模型或分布生成新的示例。

2.1.2 Implicit density model

  隐式密度模型不能直接估计或拟合数据分布。它在没有明确假设[101]的情况下从分布中生成数据实例,并利用生成的实例修改模型。GANs属于有向隐式密度模型范畴。

3 Algorithm

3.1 Generative Adversarial Nets (GANs)

3.1.1.1 Original minimax game:

3.2 GANs' representative variants

3.2.1 InfoGAN

https://zhuanlan.zhihu.com/p/55945164

从损失函数的角度来看,infoGAN的损失函数变为:

 3.2.2 Conditional GANs (cGANs)

https://blog.csdn.net/taoyafan/article/details/81229466

Conditional GAN的目标函数:

Conditional GAN 结构图:

判别网络两种形式:

ACGAN (Auxiliary Classifier GANs):

https://zhuanlan.zhihu.com/p/91592775

3.2.3 CycleGAN

https://www.jianshu.com/p/5bf937a0d993

3.3.3.6 BigGANs and StyleGAN:

StyleGAN:

https://zhuanlan.zhihu.com/p/62119852

A Review on Generative Adversarial Networks: Algorithms, Theory, and Applications的更多相关文章

  1. (转)Introductory guide to Generative Adversarial Networks (GANs) and their promise!

    Introductory guide to Generative Adversarial Networks (GANs) and their promise! Introduction Neural ...

  2. 论文解读(GAN)《Generative Adversarial Networks》

    Paper Information Title:<Generative Adversarial Networks>Authors:Ian J. Goodfellow, Jean Pouge ...

  3. StackGAN: Text to Photo-realistic Image Synthesis with Stacked Generative Adversarial Networks 论文笔记

    StackGAN: Text to Photo-realistic Image Synthesis with Stacked Generative Adversarial Networks  本文将利 ...

  4. 论文笔记之:Semi-Supervised Learning with Generative Adversarial Networks

    Semi-Supervised Learning with Generative Adversarial Networks 引言:本文将产生式对抗网络(GAN)拓展到半监督学习,通过强制判别器来输出类 ...

  5. 《Self-Attention Generative Adversarial Networks》里的注意力计算

    前天看了 criss-cross 里的注意力模型  仔细理解了  在: https://www.cnblogs.com/yjphhw/p/10750797.html 今天又看了一个注意力模型 < ...

  6. Paper Reading: Perceptual Generative Adversarial Networks for Small Object Detection

    Perceptual Generative Adversarial Networks for Small Object Detection 2017-07-11  19:47:46   CVPR 20 ...

  7. SalGAN: Visual saliency prediction with generative adversarial networks

    SalGAN: Visual saliency prediction with generative adversarial networks 2017-03-17 摘要:本文引入了对抗网络的对抗训练 ...

  8. Generative Adversarial Networks,gan论文的畅想

    前天看完Generative Adversarial Networks的论文,不知道有什么用处,总想着机器生成的数据会有机器的局限性,所以百度看了一些别人 的看法和观点,可能我是机器学习小白吧,看完之 ...

  9. 论文笔记之:UNSUPERVISED REPRESENTATION LEARNING WITH DEEP CONVOLUTIONAL GENERATIVE ADVERSARIAL NETWORKS

    UNSUPERVISED REPRESENTATION LEARNING WITH DEEP CONVOLUTIONAL GENERATIVE ADVERSARIAL NETWORKS  ICLR 2 ...

随机推荐

  1. 《Python金融大数据分析》高清PDF版|百度网盘免费下载|Python数据分析

    <Python金融大数据分析>高清PDF版|百度网盘免费下载|Python数据分析 提取码:mfku 内容简介 唯一一本详细讲解使用Python分析处理金融大数据的专业图书:金融应用开发领 ...

  2. 火车进栈(进出栈的模拟,dfs爆搜)

    这里有n列火车将要进站再出站,但是,每列火车只有1节,那就是车头. 这n列火车按1到n的顺序从东方左转进站,这个车站是南北方向的,它虽然无限长,只可惜是一个死胡同,而且站台只有一条股道,火车只能倒着从 ...

  3. Spring学习之Spring中AOP方式切入声明式事务

    mybatis-spring官方文档说明 一个使用 MyBatis-Spring 的其中一个主要原因是它允许 MyBatis 参与到 Spring 的事务管理中.而不是给 MyBatis 创建一个新的 ...

  4. Python globals和locals函数_reload函数

    Python globals和locals函数_reload函数: globals( ): 返回所有能够访问到的全局名字 num = 5 sum = 0 def add(num): func_sum ...

  5. PDOStatement::getColumnMeta

    PDOStatement::getColumnMeta — 返回结果集中一列的元数据(PHP 5 >= 5.1.0, PECL pdo >= 0.2.0)高佣联盟 www.cgewang. ...

  6. Qt 之 Graphics View Framework 简介

    Graphics View Framework 交互式 2D 图形的 Graphics View 框架概述.自 Qt4.2 中引入了 Graphics View,以取代其前身 QCanvas.Grap ...

  7. python数据处理PDF高清电子书

    点击获取提取码:jzgv 内容简介 本书采用基于项目的方法,介绍用Python完成数据获取.数据清洗.数据探索.数据呈现.数据规模化和自动化的过程.主要内容包括:Python基础知识,如何从CSV.E ...

  8. 【JZOJ4726】种花 题解(贪心+堆)

    题目大意:在一个长度为$n$的环型序列中取出$m$个数使这$m$个数的和最大,且要求这$m$个数互不相邻. ---------------------- 考虑维护$nxt$和$lst$,即一个数的前驱 ...

  9. SpringMvc异常处理和SpringMvc拦截器

    1. 异常处理思路 Controller调用service,service调用dao,异常都是向上抛出的,最终有DispatcherServlet找异常处理器进 行异常的处理. SpringMVC的异 ...

  10. 【Python】利用递归函数调用方式,将所输入的字符串,以相反的顺序显示出来

    源代码: """ 利用递归函数调用方式,将所输入的字符串,以相反的顺序显示出来 string_reverse_output():反向输出字符串的自定义函数 pending ...