CF1478-B. Nezzar and Lucky Number

题意:

题目给出一个数字\(d(1\leq d \leq 9)\)代表某个人最喜欢的数字。

题目定义了幸运数字,它的含义为:若一个数字的每个数位上至少出现一次这个人最喜欢的数字那么就称这个数字为幸运数字。例如这个人非常喜欢\(7\),那么\(711\)就是一个幸运数字,因为\(711\)的百位上有一个数字\(7\),而\(113\)就不是一个幸运数字,因为它的各个数位上都没有数字\(7\)。

题目任意给出一个数字\(a\),问你可不可以通过两个幸运数字的相加来得到它。


思路:

首先先假设\(d=7\),对于大于\(a=70\)的数字,比如\(71,75\)这些本身就是幸运数字,\(81,83,103\)这些数字虽然本身不是幸运数字,但是他们必然可以拆分成两个幸运数字相加的形式,举几个例子就能很好的说明:

若现在有个\(3\)个数字\(81,93,102\),那么\(81=(74-0)+(7+0)=74+7\),\(93=(86-10)+(7+10)=76+17\),\(102=(95-20)+(7+20)=75+27\),不止这些比较小的数字,再比如我随便打出来一个数字\(465387643875\),那么\((465387643875=465387643868-90)+(7+90)=465387643778+97\).

观察上面的式子,应该能看出规律了吧。对于任何大于\(80\)的数字,一开始设为\(7+X\),然后通过在\(X\)中减去一些数字(只减非个位上的数字)加到\(7\)上使得\(X\)的十位上也变成\(7\)。

解决了大于等于\(70\)的情况,现在就来看看小于70的情况。

在小于70的数字中,幸运数字只有\(7,17,27,37,47,57,67\),也就是说只有个位可能是\(7\),那么任意一个数字怎么判断能否由这些数字构成呢?由于这个\(a\)可能非常大,不可能通过暴力搜索的方法找到答案。

考虑这样一件事:在小于\(70\)的数字中,你要得到一个结尾为\(1\)的数字,需要几个\(7\) ?通过计算会发现需要\(3\)个\(7\)才能得到一个结尾为\(1\)的数字\(21\);那要得到一个结尾为\(6\)的数字呢?需要\(8\)个\(7\)。

有没有一些启发?如果现在有个数字是\(46\),那能否由上述的\(7\)个数字构成呢?不能,因为这些数字的个位都是\(7\),要得到个位为\(3\)的数字至少要\(8\)个\(7\)相加(这里说至少是因为你可以8个17相加,你可以3个27和5个47相加随你,但这里只说最终相加结果中最小的)也就是\(56\),而\(46<56\)无论如何都不可能由上述\(7\)个数字相加得到\(46\)。

那么大于等于\(56\)的、个位是\(6\)的数字可以有上述\(7\)个数字构成吗?可以的,比如\(66\),那\(66=7+7+7+7+7+7+17\)得到,只要灵活的在十位上加减数字就可以。

但这里有一些特殊情况,比如\(d=2\)的时候,\(2\)乘以任何数字都不可能得到一个奇数,也就是说如果给定的数字\(a\)的个位如果是奇数并且还小于\(20\)(对于大于\(20\)的情况,上述结论依然成立),那么他无论如何也不可能通过幸运数字相加得到\(a\)。

通过上面论述可以得到这样的结论:如果给定的数字\(a\)的个位数等于\(d*k\%10(k>0)\),\(k\)是可能的数字中最小的一个,并且\(a>=d*k\),那么\(a\)就可以由幸运数字相加得到。

以上仅仅作为演示,相关结论在其他的\(d\)以及\(a\)上依然适用。


AC代码

#include <cstdio>
#include <cstring>
#include <iostream> int a[15]; void solve() {
memset(a, -1, sizeof a);
int q, d, t;
scanf("%d %d", &q, &d);
for (int i = 1; i < 10; i++) {
t = (d * i % 10);
if (a[t] == -1) {
a[t] = d * i;
}
}
for (int i = 0; i < q; i++) {
scanf("%d", &t);
bool flag = false;
if (t >= 10 * d) {
flag = true;
} else if (a[t % 10] != -1 && t >= a[t % 10]) {
flag = true;
}
printf("%s\n", flag ? "YES" : "NO");
}
} int main() {
int T;
scanf("%d", &T);
while (T--) {
solve();
} return 0;
}

CF1478-B. Nezzar and Lucky Number的更多相关文章

  1. 枚举 + 进制转换 --- hdu 4937 Lucky Number

    Lucky Number Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Others)To ...

  2. SCU3502 The Almost Lucky Number

    Description A lucky number is a number whose decimal representation contains only the digits \(4\) a ...

  3. HDOJ 4937 Lucky Number

    当进制转换后所剩下的为数较少时(2位.3位),相应的base都比較大.能够用数学的方法计算出来. 预处理掉转换后位数为3位后,base就小于n的3次方了,能够暴力计算. . .. Lucky Numb ...

  4. 题目1380:lucky number

    转载请注明文本链接 http://blog.csdn.net/yangnanhai93/article/details/40441709 题目链接地址:http://ac.jobdu.com/prob ...

  5. HDU 3346 Lucky Number

    水题 #include<cstdio> #include<cstring> #include<cmath> #include<algorithm> us ...

  6. 九度oj 题目1380:lucky number

    题目描述: 每个人有自己的lucky number,小A也一样.不过他的lucky number定义不一样.他认为一个序列中某些数出现的次数为n的话,都是他的lucky number.但是,现在这个序 ...

  7. 『NYIST』第九届河南省ACM竞赛队伍选拔赛[正式赛二]- Nearly Lucky Number(Codeforces Beta Round #84 (Div. 2 Only)A. Nearly)

    A. Nearly Lucky Number time limit per test 2 seconds memory limit per test 256 megabytes input stand ...

  8. ZOJ 3233 Lucky Number

    Lucky Number Time Limit: 5000ms Memory Limit: 32768KB This problem will be judged on ZJU. Original I ...

  9. B - Nearly Lucky Number

    Problem description Petya loves lucky numbers. We all know that lucky numbers are the positive integ ...

随机推荐

  1. Windows+.Net Framework+svn+IIS在Jenkins上的自动化部署入门

    关于Jenkins的使用及安装,上一篇文章我已经介绍过了,Windows+.NetCore+git+IIS在Jenkins上的自动化部署入门.这篇主要是在jenkins如何安装SVN和MSBuild. ...

  2. centos7虚拟机开启端口后 外部不能访问的问题

    转载 https://blog.csdn.net/u012045045/article/details/104219823 虚拟机新开了5005端口,系统内部是显示开了的(wget 192.168.4 ...

  3. Py-解决粘包现象,tcp实现并发,tcp实现传输文件的程序,校验思路,线程与进程

    黏包现象 TCP粘包就是指发送方发送的若干包数据到达接收方时粘成了一包,从接收缓冲区来看,后一包数据的头紧接着前一包数据的尾,出现粘包的原因是多方面的,可能是来自发送方,也可能是来自接收方TCP接收到 ...

  4. 借助 AppleScript 一键打开工作空间

    我有个小毛病:同时只能在一个工程里工作. 假如让我开四五个 Webstorm,在工程里 A 改个Bug,然后又到工程 B 里加个需求,再去工程 C 发个版,切来切去一会儿就懵了. 于是有了这个项目:m ...

  5. TCMalloc源码学习(三)(小块内存分配)

    线程本地cache 线程本地cache对应的是类 ThreadCache,每一个thread一个实例,初始化代码在static函数CreateCacheIfNecessary中, 在该线程第一次申请内 ...

  6. SpringBoot-文件系统-Excel,PDF,XML,CSV

    SpringBoot-文件系统-Excel,PDF,XML,CSV 1.Excel文件管理 1.1 POI依赖 1.2 文件读取 1.3 文件创建 1.4 文件导出 1.5 文件导出接口 2.PDF文 ...

  7. Docker监控平台prometheus和grafana,监控redis,mysql,docker,服务器信息

    Docker监控平台prometheus和grafana,监控redis,mysql,docker,服务器信息 一.通过redis_exporter监控redis 1.1 下载镜像 1.2 运行服务 ...

  8. 阿里云MQ

    阿里云众多中间件服务中有一款非常强大的中间见服务,在企业互联网架构中起到不可替代的作用,相比较开源的RabbitMQ,阿里的消息队列MQ承受的住阿里内部1000+核心应用的使用,每天转几千条消息,稳定 ...

  9. FortiGate防火墙办公网常用配置

    1.建立主备机 2.配置端口 3.配置SD-WAN 4.新建上网路由 5.新建上网策略 6.建立与其他点的IPSec VPN或点对点专线

  10. .net core 和 WPF 开发升讯威在线客服与营销系统:使用线程安全的 BlockingCollection 实现高性能的数据处理

    本系列文章详细介绍使用 .net core 和 WPF 开发 升讯威在线客服与营销系统 的过程.本产品已经成熟稳定并投入商用. 在线演示环境:https://kf.shengxunwei.com 注意 ...