1基本概念和原则

每一台host上面可以并行N个worker,每一个worker下面可以并行M个executor,task们会被分配到executor上面去执行。Stage指的是一组并行运行的task,stage内部是不能出现shuffle的,因为shuffle的就像篱笆一样阻止了并行task的运行,遇到shuffle就意味着到了stage的边界。

CPU的core数量,每个executor可以占用一个或多个core,可以通过观察CPU的使用率变化来了解计算资源的使用情况,例如,很常见的一种浪费是一个executor占用了多个core,但是总的CPU使用率却不高(因为一个executor并不总能充分利用多核的能力),这个时候可以考虑让一个executor占用更少的core,同时worker下面增加更多的executor,或者一台host上面增加更多的worker来增加并行执行的executor的数量,从而增加CPU利用率。但是增加executor的时候需要考虑好内存消耗,因为一台机器的内存分配给越多的executor,每个executor的内存就越小,以致出现过多的数据spill over甚至out of memory的情况。

partition和parallelism,partition指的就是数据分片的数量,每一次task只能处理一个partition的数据,这个值太小了会导致每片数据量太大,导致内存压力,或者诸多executor的计算能力无法利用充分;但是如果太大了则会导致分片太多,执行效率降低。在执行action类型操作的时候(比如各种reduce操作),partition的数量会选择parent RDD中最大的那一个。而parallelism则指的是在RDD进行reduce类操作的时候,默认返回数据的paritition数量(而在进行map类操作的时候,partition数量通常取自parent RDD中较大的一个,而且也不会涉及shuffle,因此这个parallelism的参数没有影响)。所以说,这两个概念密切相关,都是涉及到数据分片的,作用方式其实是统一的。通过spark.default.parallelism可以设置默认的分片数量,而很多RDD的操作都可以指定一个partition参数来显式控制具体的分片数量。

看这样几个例子:

(1)实践中跑的Spark job,有的特别慢,查看CPU利用率很低,可以尝试减少每个executor占用CPU core的数量,增加并行的executor数量,同时配合增加分片,整体上增加了CPU的利用率,加快数据处理速度。

(2)发现某job很容易发生内存溢出,我们就增大分片数量,从而减少了每片数据的规模,同时还减少并行的executor数量,这样相同的内存资源分配给数量更少的executor,相当于增加了每个task的内存分配,这样运行速度可能慢了些,但是总比OOM强。

(3)数据量特别少,有大量的小文件生成,就减少文件分片,没必要创建那么多task,这种情况,如果只是最原始的input比较小,一般都能被注意到;但是,如果是在运算过程中,比如应用某个reduceBy或者某个filter以后,数据大量减少,这种低效情况就很少被留意到。

最后再补充一点,随着参数和配置的变化,性能的瓶颈是变化的,在分析问题的时候不要忘记。例如在每台机器上部署的executor数量增加的时候,性能一开始是增加的,同时也观察到CPU的平均使用率在增加;但是随着单台机器上的executor越来越多,性能下降了,因为随着executor的数量增加,被分配到每个executor的内存数量减小,在内存里直接操作的越来越少,spill over到磁盘上的数据越来越多,自然性能就变差了。

下面给这样一个直观的例子,当前总的cpu利用率并不高

其次,涉及性能调优我们经常要改配置,在Spark里面有三种常见的配置方式,虽然有些参数的配置是可以互相替代,但是作为最佳实践,还是需要遵循不同的情形下使用不同的配置:

1.设置环境变量,这种方式主要用于和环境、硬件相关的配置;

2.命令行参数,这种方式主要用于不同次的运行会发生变化的参数,用双横线开头;

3.代码里面(比如Scala)显式设置(SparkConf对象),这种配置通常是application级别的配置,一般不改变。

举一个配置的具体例子。slave、worker和executor之间的比例调整。我们经常需要调整并行的executor的数量,那么简单说有两种方式:

1.每个worker内始终跑一个executor,但是调整单台slave上并行的worker的数量。比如,SPARK_WORKER_INSTANCES可以设置每个slave的worker的数量,但是在改变这个参数的时候,比如改成2,一定要相应设置SPARK_WORKER_CORES的值,让每个worker使用原有一半的core,这样才能让两个worker一同工作;

2.每台slave内始终只部署一个worker,但是worker内部署多个executor。我们是在YARN框架下采用这个调整来实现executor数量改变的,一种典型办法是,一个host只跑一个worker,然后配置spark.executor.cores为host上CPU core的N分之一,同时也设置spark.executor.memory为host上分配给Spark计算内存的N分之一,这样这个host上就能够启动N个executor。

有的配置在不同的MR框架/工具下是不一样的,比如YARN下有的参数的默认取值就不同,这点需要注意。

明确这些基础的事情以后,再来一项一项看性能调优的要点.

Spark-1-调优基本原则的更多相关文章

  1. Spark性能调优之代码方面的优化

    Spark性能调优之代码方面的优化 1.避免创建重复的RDD     对性能没有问题,但会造成代码混乱   2.尽可能复用同一个RDD,减少产生RDD的个数   3.对多次使用的RDD进行持久化(ca ...

  2. [Spark性能调优] 第一章:性能调优的本质、Spark资源使用原理和调优要点分析

    本課主題 大数据性能调优的本质 Spark 性能调优要点分析 Spark 资源使用原理流程 Spark 资源调优最佳实战 Spark 更高性能的算子 引言 我们谈大数据性能调优,到底在谈什么,它的本质 ...

  3. Spark性能调优之合理设置并行度

    Spark性能调优之合理设置并行度 1.Spark的并行度指的是什么?     spark作业中,各个stage的task的数量,也就代表了spark作业在各个阶段stage的并行度!     当分配 ...

  4. Spark性能调优之资源分配

    Spark性能调优之资源分配    性能优化王道就是给更多资源!机器更多了,CPU更多了,内存更多了,性能和速度上的提升,是显而易见的.基本上,在一定范围之内,增加资源与性能的提升,是成正比的:写完了 ...

  5. Spark性能调优之Shuffle调优

    Spark性能调优之Shuffle调优    • Spark底层shuffle的传输方式是使用netty传输,netty在进行网络传输的过程会申请堆外内存(netty是零拷贝),所以使用了堆外内存. ...

  6. Spark性能调优之解决数据倾斜

    Spark性能调优之解决数据倾斜 数据倾斜七种解决方案 shuffle的过程最容易引起数据倾斜 1.使用Hive ETL预处理数据    • 方案适用场景:如果导致数据倾斜的是Hive表.如果该Hiv ...

  7. Spark性能调优之JVM调优

    Spark性能调优之JVM调优 通过一张图让你明白以下四个问题                1.JVM GC机制,堆内存的组成                2.Spark的调优为什么会和JVM的调 ...

  8. Spark性能调优

    Spark性能优化指南——基础篇 https://tech.meituan.com/spark-tuning-basic.html Spark性能优化指南——高级篇 https://tech.meit ...

  9. Spark官方调优文档翻译(转载)

    Spark调优 由于大部分Spark计算都是在内存中完成的,所以Spark程序的瓶颈可能由集群中任意一种资源导致,如:CPU.网络带宽.或者内存等.最常见的情况是,数据能装进内存,而瓶颈是网络带宽:当 ...

  10. spark性能调优 数据倾斜 内存不足 oom解决办法

    [重要] Spark性能调优——扩展篇 : http://blog.csdn.net/zdy0_2004/article/details/51705043

随机推荐

  1. 深度分析:Java多线程,线程安全,并发包

    1:synchronized(保证原子性和可见性) 1.同步锁.多线程同时访问时,同一时刻只能有一个线程能够访问使synchronized修饰的代码块或方法.它修饰的对象有以下几种: 修饰一个代码块, ...

  2. 全面解析RayFire的动态对象与静态对象

    我们在日常使用RayFire的过程中,接触得比较多的应该就是RayFire的对象设置了.RayFire的对象包含了动态对象.静态对象与休眠对象,其中动态对象.静态对象可以结合动力学.运动学概念设置动作 ...

  3. python中操作excel数据 封装成一个类

    本文用python中openpyxl库,封装成excel数据的读写方法 from openpyxl import load_workbook from openpyxl.worksheet.works ...

  4. Java基础教程——Set

    Set·无序,不重复 HashSet 特点:没有重复数据,数据不按存入的顺序输出. HashSet由Hash表结构支持.不支持set的迭代顺序,不保证顺序. 但是Hash表结构查询速度很快. 创建集合 ...

  5. C++基础知识篇:C++ 运算符

    运算符是一种告诉编译器执行特定的数学或逻辑操作的符号.C++ 内置了丰富的运算符,并提供了以下类型的运算符: 算术运算符 关系运算符 逻辑运算符 位运算符 赋值运算符 杂项运算符 本章将逐一介绍算术运 ...

  6. 这次我让你彻底弄懂 RESTful

    微信搜 「yes的练级攻略」干货满满,不然来掐我,回复[123]一份20W字的算法刷题笔记等你来领.欢迎分享,转载请保留出处. 本文已收录至 https://github.com/yessimida/ ...

  7. 分布式系统唯一ID

    一 什么是分布式系统唯一ID 在复杂分布式系统中,往往需要对大量的数据和消息进行唯一标识. 如在金融.电商.支付.等产品的系统中,数据日渐增长,对数据分库分表后需要有一个唯一ID来标识一条数据或消息, ...

  8. Spring Cloud Alibaba 初体验(二) Nacos 服务注册与发现 + 集成 Spring Cloud Gateway

    一.服务注册 添加依赖: <dependency> <groupId>com.alibaba.cloud</groupId> <artifactId>s ...

  9. 基于CefSharp开发(四)浏览器文件下载

    一.CefSharp文件下载分析 查看ChromiumWebBrowser类发现cef数据下载处理在IDownloadHandler中进行,但并未找到相应的实现类,故我们需要自己实现DownloadH ...

  10. day8(使用celery异步发送短信)

    1.1在celery_task/mian.py中添加发送短信函数 # celery项目中的所有导包地址, 都是以CELERY_BASE_DIR为基准设定. # 执行celery命令时, 也需要进入CE ...