A

均移到黑色或白色即可。

时间复杂度 \(O\left(n\log n\right)\)。

B

枚举每种开关判断是否有灯只能靠该种开关控制。

时间复杂度 \(O\left(nm\right)\)。

C

最短的木板必然作为某一个木桶的容积,所以我们可以根据 \(l\) 找出可能作为容积的最长的木板。

若可能作为容积的木板总数不足木桶总数就无解。

然后优先将长的作为容积的木板和不可能作为容积的木板配掉,这个比较显然。

最后如果不可能作为容积的木板不足了就继续贪心配一下,每次在剩下的所有木板中取最长或最短的 \(k\) 个,这个更显然了。

时间复杂度 \(O\left(nk\right)\)。

D

首先发现起始高度尽可能大一定是对的,反正可以放相同的高度进行调整

举个栗子,绿色代表原有的堆,红色代表新增的堆:

\(\color{green}{\texttt{1 2 3 4 3 2 1}}\\\color{green}{\texttt{2 3 4 3 2 1}}\color{red}{\texttt{ 1}}\\\color{green}{\texttt{3 4 3}}\color{red}{\texttt{ 3 }}\color{green}{\texttt{2 1}}\\\color{green}{\texttt{4 3 3}}\color{red}{\texttt{ 3}}\color{green}{\texttt{ 2 1}}\\\color{red}{\texttt{5 }}\color{green}{\texttt{4 3 2 1}}\color{red}{\texttt{ 1}}\)

先判掉最大高度(这里也是起始高度)\(top\) 小于 \(h\) 的情况,此时必定为一个不升序列,且必定为一个下降序列插入至多一堆

接下来的情况起始高度必定为 \(h\),此时先是一个不降序列,然后是一个不升序列。同样地,最大高度 \(top\) 越大越好。

可以先把不升序列中 \(1\sim h-1\) 这一段的贡献减掉,即 \(n\gets n-\frac{h\left(h-1\right)}{2}\)。

\[\left(h+top\right)\left(top-h+1\right)-top\leq n
\]
\[top^2-h^2+h\leq n
\]
\[top^2\leq n+h^2-h
\]
\[top=\left\lfloor\sqrt{n+h^2-h}\right\rfloor
\]

接下来要处理多出来的沙袋。注意,最坏情况可能要插入最多两堆,举个栗子:

x x+1 x
x x+1 x+1 x
x x+1 x+1 x+1 x

三堆及以上最大高度可以达到 \(x+2\),具体可以手玩一下。

时间复杂度 \(O\left(1\right)\)。

E

简单 dp。

令 \(f_i\) 表示前 \(i\) 个数是否有满足条件的分组方案,转移的时候枚举当前组的开头即可,但直接这么做是 \(O\left(n^2\right)\) 的。

发现合法的第一个转移点单调不降,而我们又只关心是否,所以可以用一个普通队列来维护,时间复杂度 \(O\left(n\right)\)。

F

对于每个字母,如果前一个区间中它的哈希值和后一个区间中某个字母的哈希值一样,则这两个区间是匹配的。

至于区间 \(l\sim r\) 的哈希值,它等于 \(r\) 的哈希值减去 \(l-1\) 的哈希值与基数的 \(r-l+1\) 次幂的积,就和你某个进制的数取后面一段是一样的。

时间复杂度 \(O\left(n+m\right)\)。

G

鸽了。

Contest 985的更多相关文章

  1. Codeforce Div-2 985 C. Liebig's Barrels

    http://codeforces.com/contest/985/problem/C C. Liebig's Barrels time limit per test 2 seconds memory ...

  2. Codeforces Educational Codeforces Round 44 (Rated for Div. 2) F. Isomorphic Strings

    Codeforces Educational Codeforces Round 44 (Rated for Div. 2) F. Isomorphic Strings 题目连接: http://cod ...

  3. Codeforces Educational Codeforces Round 44 (Rated for Div. 2) E. Pencils and Boxes

    Codeforces Educational Codeforces Round 44 (Rated for Div. 2) E. Pencils and Boxes 题目连接: http://code ...

  4. B. Switches and Lamps

    链接 [https://codeforces.com/contest/985/problem/B] 题意 给你n,m,分别是n个开关,m个灯 给一个n*m的字符矩阵aij=1,表示i可以控制j这个灯 ...

  5. A. Chess Placing

    链接 [https://codeforces.com/contest/985/problem/A] 题意 给你一个偶数n,输入n/2个数,代表棋子的位置,有一个1*n的棋盘是黑白相间的 问你使得所有棋 ...

  6. Educational Codeforces Round 44 (Rated for Div. 2)

    题目链接:https://codeforces.com/contest/985 ’A.Chess Placing 题意:给了一维的一个棋盘,共有n(n必为偶数)个格子.棋盘上是黑白相间的.现在棋盘上有 ...

  7. CF练习记录

    2018/5/6 Codeforces Round #478 (Div. 2) C http://codeforces.com/contest/975/problem/C Valhalla Siege ...

  8. 栈 && 教授的测试

    卡特兰数:https://blog.csdn.net/wu_tongtong/article/details/78161211 https://www.luogu.org/problemnew/sho ...

  9. Contest - 多校训练(985专场) Problem C: 985的方格难题

    题目链接:http://acm.zzuli.edu.cn/zzuliacm/problem.php?cid=1157&pid=2 Description 985走入了一个n * n的方格地图, ...

随机推荐

  1. Spring Boot学习笔记(一)——Eclipse安装STS插件

    一.简介 Spring Boot是由Pivotal团队提供的全新框架,其设计目的是用来简化新Spring应用的初始搭建以及开发过程.该框架使用了特定的方式进行配置,从而使开发人员不再需要定义样板化的配 ...

  2. Kubernetes 配置私有镜像仓库时,没有权限访问的问题

    使用 K8S 部署服务时,如果指定的镜像地址是内部镜像仓库,那么在下载镜像的时候可能会报权限错误.这是由于在 K8S 中部署服务时,K8S 需要到 Harbor 中进行一次验证,这个验证与节点中使用 ...

  3. Kubernetes Pod驱逐策略

    Kubelet 能够主动监测和防止计算资源的全面短缺. 在资源短缺的情况下,kubelet 可以主动地结束一个或多个 Pod 以回收短缺的资源. 当 kubelet 结束一个 Pod 时,它将终止 P ...

  4. mysql报错10061和10038

    用navicat连接报错10038,用sqlyog报错10061,又去查看服务,发现服务丢失 经过一系列的查阅资料,用下面的方式解决了问题 1.用管理员的方式打开命令行窗口 2.进入mysql的bin ...

  5. [Luogu P1345] [USACO5.4]奶牛的电信Telecowmunication (最小割)

    题面 传送门:https://www.luogu.org/problemnew/show/P1345 ] Solution 这道题,需要一个小技巧了解决. 我相信很多像我这样接蒟蒻,看到这道题,不禁兴 ...

  6. update和insert

    sprintf(sql, "INSERT lora_net(eui,online) VALUES('%s', 1) ON DUPLICATE KEY UPDATE online=1" ...

  7. unicode与编码的关系

    参考链接先贴上来:https://blog.csdn.net/humadivinity/article/details/79403625https://www.cnblogs.com/kevin2ch ...

  8. 凯撒密码(Java)

    事实上就是把每个字母偏移一下而已,并且字符不限于a-zA-z,可以是别的,那就很显而易见了,代码如下:定义一个Caesar密码类,成员变量只有密钥,也就是偏移量key 代码如下: public cla ...

  9. 不断要求用户输入学生姓名,输入q结束.

    while (true) { Console.WriteLine("请输入学生姓名"); string a = Console.ReadLine(); if (a == " ...

  10. Java线程状态及切换

    Java线程状态及切换 一.什么是Java线程状态 在Java程序中,用于描述Java线程的六种状态: 新建(NEW):当前线程,刚刚新建出来,尚未启动. 运行(RUNNABLE):当前线程,处于竞争 ...