使用Pytorch搭建模型
本来是只用Tenorflow的,但是因为TF有些Numpy特性并不支持,比如对数组使用列表进行切片,所以只能转战Pytorch了(pytorch是支持的)。还好Pytorch比较容易上手,几乎完美复制了Numpy的特性(但还有一些特性不支持),怪不得热度上升得这么快。
模型定义
和TF很像,Pytorch也通过继承父类来搭建模型,同样也是实现两个方法。在TF中是__init__()和call(),在Pytorch中则是__init__()和forward()。功能类似,都分别是初始化模型内部结构和进行推理。其它功能比如计算loss和训练函数,你也可以继承在里面,当然这是可选的。下面搭建一个判别MNIST手写字的Demo,首先给出模型代码:
import numpy as np
import matplotlib.pyplot as plt
import torch
from torch import nn,optim
from torchsummary import summary
from keras.datasets import mnist
from keras.utils import to_categorical
device = torch.device('cuda') #——————1—————— class ModelTest(nn.Module):
def __init__(self,device):
super().__init__()
self.layer1 = nn.Sequential(nn.Flatten(),nn.Linear(28*28,512),nn.ReLU())#——————2——————
self.layer2 = nn.Sequential(nn.Linear(512,512),nn.ReLU())
self.layer3 = nn.Sequential(nn.Linear(512,512),nn.ReLU())
self.layer4 = nn.Sequential(nn.Linear(512,10),nn.Softmax()) self.to(device) #——————3——————
self.opt = optim.SGD(self.parameters(),lr=0.01)#——————4——————
def forward(self,inputs): #——————5——————
x = self.layer1(inputs)
x = self.layer2(x)
x = self.layer3(x)
x = self.layer4(x)
return x
def get_loss(self,true_labels,predicts):
loss = -true_labels * torch.log(predicts) #——————6——————
loss = torch.mean(loss)
return loss
def train(self,imgs,labels):
predicts = model(imgs)
loss = self.get_loss(labels,predicts)
self.opt.zero_grad()#——————7——————
loss.backward()#——————8——————
self.opt.step()#——————9——————
model = ModelTest(device)
summary(model,(1,28,28),3,device='cuda') #——————10——————
#1:获取设备,以方便后面的模型与变量进行内存迁移,设备名只有两种:'cuda'和'cpu'。通常是在你有GPU的情况下需要这样显式进行设备的设置,从而在需要时,你可以将变量从主存迁移到显存中。如果没有GPU,不获取也没事,pytorch会默认将参数都保存在主存中。
#2:模型中层的定义,可以使用Sequential将想要统一管理的层集中表示为一层。
#3:在初始化中将模型参数迁移到GPU显存中,加速运算,当然你也可以在需要时在外部执行model.to(device)进行迁移。
#4:定义模型的优化器,和TF不同,pytorch需要在定义时就将需要梯度下降的参数传入,也就是其中的self.parameters(),表示当前模型的所有参数。实际上你不用担心定义优化器和模型参数的顺序问题,因为self.parameters()的输出并不是模型参数的实例,而是整个模型参数对象的指针,所以即使你在定义优化器之后又定义了一个层,它依然能优化到。当然优化器你也可以在外部定义,传入model.parameters()即可。这里定义了一个随机梯度下降。
#5:模型的前向传播,和TF的call()类似,定义好model()所执行的就是这个函数。
#6:我将获取loss的函数集成在了模型中,这里计算的是真实标签和预测标签之间的交叉熵。
#7/8/9:在TF中,参数梯度是保存在梯度带中的,而在pytorch中,参数梯度是各自集成在对应的参数中的,可以使用tensor.grad来查看。每次对loss执行backward(),pytorch都会将参与loss计算的所有可训练参数关于loss的梯度叠加进去(直接相加)。所以如果我们没有叠加梯度的意愿的话,那就要在backward()之前先把之前的梯度删除。又因为我们前面已经把待训练的参数都传入了优化器,所以,对优化器使用zero_grad(),就能把所有待训练参数中已存在的梯度都清零。那么梯度叠加什么时候用到呢?比如批量梯度下降,当内存不够直接计算整个批量的梯度时,我们只能将批量分成一部分一部分来计算,每算一个部分得到loss就backward()一次,从而得到整个批量的梯度。梯度计算好后,再执行优化器的step(),优化器根据可训练参数的梯度对其执行一步优化。
#10:使用torchsummary函数显示模型结构。奇怪为什么不把这个继承在torch里面,要重新安装一个torchsummary库。
训练及可视化
接下来使用模型进行训练,因为pytorch自带的MNIST数据集并不好用,所以我使用的是Keras自带的,定义了一个获取数据的生成器。下面是完整的训练及绘图代码(50次迭代记录一次准确率):
import numpy as np
import matplotlib.pyplot as plt
import torch
from torch import nn,optim
from torchsummary import summary
from keras.datasets import mnist
from keras.utils import to_categorical
device = torch.device('cuda') #——————1—————— class ModelTest(nn.Module):
def __init__(self,device):
super().__init__()
self.layer1 = nn.Sequential(nn.Flatten(),nn.Linear(28*28,512),nn.ReLU())#——————2——————
self.layer2 = nn.Sequential(nn.Linear(512,512),nn.ReLU())
self.layer3 = nn.Sequential(nn.Linear(512,512),nn.ReLU())
self.layer4 = nn.Sequential(nn.Linear(512,10),nn.Softmax()) self.to(device) #——————3——————
self.opt = optim.SGD(self.parameters(),lr=0.01)#——————4——————
def forward(self,inputs): #——————5——————
x = self.layer1(inputs)
x = self.layer2(x)
x = self.layer3(x)
x = self.layer4(x)
return x
def get_loss(self,true_labels,predicts):
loss = -true_labels * torch.log(predicts) #——————6——————
loss = torch.mean(loss)
return loss
def train(self,imgs,labels):
predicts = model(imgs)
loss = self.get_loss(labels,predicts)
self.opt.zero_grad()#——————7——————
loss.backward()#——————8——————
self.opt.step()#——————9——————
def get_data(device,is_train = True, batch = 1024, num = 10000):
train_data,test_data = mnist.load_data()
if is_train:
imgs,labels = train_data
else:
imgs,labels = test_data
imgs = (imgs/255*2-1)[:,np.newaxis,...]
labels = to_categorical(labels,10)
imgs = torch.tensor(imgs,dtype=torch.float32).to(device)
labels = torch.tensor(labels,dtype=torch.float32).to(device)
i = 0
while(True):
i += batch
if i > num:
i = batch
yield imgs[i-batch:i],labels[i-batch:i]
train_dg = get_data(device, True,batch=4096,num=60000)
test_dg = get_data(device, False,batch=5000,num=10000) model = ModelTest(device)
summary(model,(1,28,28),11,device='cuda')
ACCs = []
import time
start = time.time()
for j in range(20000):
#训练
imgs,labels = next(train_dg)
model.train(imgs,labels) #验证
img,label = next(test_dg)
predicts = model(img)
acc = 1 - torch.count_nonzero(torch.argmax(predicts,axis=1) - torch.argmax(label,axis=1))/label.shape[0]
if j % 50 == 0:
t = time.time() - start
start = time.time()
ACCs.append(acc.cpu().numpy())
print(j,t,'ACC: ',acc)
#绘图
x = np.linspace(0,len(ACCs),len(ACCs))
plt.plot(x,ACCs)
准确率变化图如下:

注意事项
需要注意的是,pytorch的tensor基于numpy的array,它们是共享内存的。也就是说,如果你把tensor直接插入一个列表,当你修改这个tensor时,列表中的这个tensor也会被修改;更容易被忽略的是,即使你用tensor.detach.numpy(),先将tensor转换为array类型,再插入列表,当你修改原本的tensor时,列表中的这个array也依然会被修改。所以如果我们只是想保存tensor的值而不是整个对象,就要使用np.array(tensor)将tensor的值复制出来。
使用Pytorch搭建模型的更多相关文章
- [炼丹术]使用Pytorch搭建模型的步骤及教程
使用Pytorch搭建模型的步骤及教程 我们知道,模型有一个特定的生命周期,了解这个为数据集建模和理解 PyTorch API 提供了指导方向.我们可以根据生命周期的每一个步骤进行设计和优化,同时更加 ...
- 目标检测-基于Pytorch实现Yolov3(1)- 搭建模型
原文地址:https://www.cnblogs.com/jacklu/p/9853599.html 本人前段时间在T厂做了目标检测的项目,对一些目标检测框架也有了一定理解.其中Yolov3速度非常快 ...
- 一文弄懂pytorch搭建网络流程+多分类评价指标
讲在前面,本来想通过一个简单的多层感知机实验一下不同的优化方法的,结果写着写着就先研究起评价指标来了,之前也写过一篇:https://www.cnblogs.com/xiximayou/p/13700 ...
- Pytorch线性规划模型 学习笔记(一)
Pytorch线性规划模型 学习笔记(一) Pytorch视频学习资料参考:<PyTorch深度学习实践>完结合集 Pytorch搭建神经网络的四大部分 1. 准备数据 Prepare d ...
- pytorch搭建简单网络
pytorch搭建一个简单神经网络 import torch import torch.nn as nn # 定义数据 # x:输入数据 # y:标签 x = torch.Tensor([[0.2, ...
- PyTorch保存模型与加载模型+Finetune预训练模型使用
Pytorch 保存模型与加载模型 PyTorch之保存加载模型 参数初始化参 数的初始化其实就是对参数赋值.而我们需要学习的参数其实都是Variable,它其实是对Tensor的封装,同时提供了da ...
- python日记:用pytorch搭建一个简单的神经网络
最近在学习pytorch框架,给大家分享一个最最最最基本的用pytorch搭建神经网络并且训练的方法.本人是第一次写这种分享文章,希望对初学pytorch的朋友有所帮助! 一.任务 首先说下我们要搭建 ...
- TensorFlow搭建模型方式总结
引言 TensorFlow提供了多种API,使得入门者和专家可以根据自己的需求选择不同的API搭建模型. 基于Keras Sequential API搭建模型 Sequential适用于线性堆叠的方式 ...
- 奉献pytorch 搭建 CNN 卷积神经网络训练图像识别的模型,配合numpy 和matplotlib 一起使用调用 cuda GPU进行加速训练
1.Torch构建简单的模型 # coding:utf-8 import torch class Net(torch.nn.Module): def __init__(self,img_rgb=3,i ...
随机推荐
- IOC 原理
SpringIOC实现原理 1. 依赖倒置 假设我们设计一辆汽车:先设计轮子,然后根据轮子大小设计底盘,接着根据底盘设计车身,最后根据车身设计好整个汽车.这里就出现了一个“依赖”关系:汽车依赖车身,车 ...
- outh2
之前做天猫精灵对接,就碰到了outh鉴权,当时实现好之后没有细细缕,今天看了一个博主的介绍,贴一下 转载自http://www.ruanyifeng.com/blog/2014/05/oauth_2_ ...
- pytest自学第二期
2.1 通过python解释器调用 pytest 我不知道有什么用:-) 以后就这样,如果有自己学过但是不知道的东西,就挂在那里晒着鞭尸,一直不会就一直鞭尸,直到自己参透了其中的道理再回到这里补全 在 ...
- python环境变量的安装与配置
安装最新的3.x(2.x如今已经不常见) 下图来源:百度(电脑已安装,不能重复) 一定要勾选"Add Python 3.6 to PATH".(如果没有勾选在安装完成后需要手动添加 ...
- 我给VSCode报了个bug,微软工程师竟然凌晨回复了...
柠檬哥整理了50本计算机相关的电子书,关注公众号「后端技术学堂」,回复「1024」即可获取,回复「进群」拉你进读者技术交流群. 本文首发个人微信公众号,欢迎围观点击阅读原文 最近遇到一个有意思的bug ...
- Python-去除字符串中不想要的字符
问题: 过滤用户输入中前后多余的空白字符 ' ++++abc123--- ' 过滤某windows下编辑文本中的'\r': 'hello world \r\n' 去掉文本中unicode组 ...
- 实验 3:Mininet 实验——测量路径的损耗率
一.实验目的 在实验 2 的基础上进一步熟悉 Mininet 自定义拓扑脚本,以及与损耗率相关的设定;初步了解 Mininet 安装时自带的 POX 控制器脚本编写,测试路径损耗率. 二.实验任务 h ...
- unsigned int 和 int
就如同int a:一样,int 也能被其它的修饰符修饰.除void类型外,基本数据类型之前都可以加各种类型修饰符,类型修饰符有如下四种:1.signed----有符号,可修饰char.int.Int是 ...
- 利用rtklib处理GPS以及北斗数据详解
利用rtklib开源代码处理GPS以及北斗数据详解 在GNSS领域最基础的工作是这些GNSS系统的定位工作,对于绝大多数研究者,自己着手完成这些工作是一个"鸡肋":完全独立设计的话 ...
- DX12龙书 01 - 向量在几何学和数学中的表示以及运算定义
0x00 向量 向量 ( vector ) 是一种兼具大小 ( magnitude ) 和方向的量. 0x01 几何表示 几何方法中用一条有向线段来表示一个向量,其中,线段长度代表向量的模,箭头的指向 ...