An Introduction to Variational Methods (5.3)
从之前的文章中,我们已经得到了所有需要求解的参数的优化分布的形式,分别为:
但是,我们从这些分布的表达式中(参见之前的文章),可以发现这些式子并不能够直接求解。这是因为各个参数之间相互耦合,从而导致得到的不是一个直接可以得到的解,所以我们需要进行迭代求解,正如我们在之前所描述的一样。我们观察这三组参数的表达形式,我们会发现,Z的求解依赖于r这个变量,而r这个变量的求解依赖于其余的所有参数。我们再看其他的参数,这些参数的求解依赖于r。从而我们得到了这个求解过程中的耦合部分。所以我们可以得到一个初步的求解迭代过程:
1. 初始化所有的参数,包括Z,r,pi,mu,Lambda等控制参数以及其超参数;
2. 保持pi,mu,Lambda等控制参数不变,根据表达式,求解r,进而求解Z。
3. 保持r和Z不变,根据表达式求解pi,mu,Lambda等控制参数。
如此不断往复,直至结果达到收敛精度要求或者超过一定迭代次数为止。
到这一步,我们可以基本认为,这个问题得到了解决。但是其中还有很多细节,我并没有在文中给予详细的解答,对于迭代过程的求解,也并不是一句话就可以带过的。
我们现在回头再去观察这个问题,我们会发现一个有趣的地方。那就是我们所求解的优化分布的形式,和我们所提出来的prior的形式是完全相同的。这是一个偶然现象,还是必然呢?答案是,在这个问题中,这是一种必然的过程,这是因为 我们选择的就是所希望求解分布的共轭先验(conjugate prior)。我简单解释一下这个概念:
对于一个给定的分布p(X|W),我们可以寻找其一个先验分布p(W),使得该先验和似然函数的乘积与先验分布有相同的函数形式,而我们知道,后验分布p(W|X)正比于先验和似然函数的乘积,从而与先验有相同的函数形式。
这样一个共轭先验的好处,是使得我们可以不断地重复先验转向后验的过程,使得我们可以不断利用已有的数据去理解新的数据,而后将它们放在一起,都作为已有的数据,再去理解新的数据,如此不断往复。而且共轭先验的函数形式也让数学形式上的分析变得更为容易,我们可以只需要考虑整个分布的一些重要的有特征的部分,而不需要对于其归一化常数等不重要的部分进行多次计算,只需要最后的时候根据函数形式进行对应就可以了。
而一个有意思的地方在于,对于指数家族函数的分布来说,每一个都存在一个对应的共轭先验,我简单介绍一下,对于形式为如下的分布,都可以成为指数家族分布:
x可以为标量,也可以为矢量。u(x)为x的某种形式a的函数,而eta称作natural parameters,其函数g(eta)可以看做是一个归一化系数。
现在,我们为参数引入一个先验:
而我们给定一个数据集,也可以计算其似然值:
其中
这样,我们将先验和似然函数相乘,可以得到:
而这个函数,与先验函数具有相同的函数形式。这时候,我们就找到了一个共轭先验。而我们的原函数,是指数家族函数分布的一般形式,这也就意味着,每一个指数家族函数分布,都有其对应的共轭先验。
An Introduction to Variational Methods (5.3)的更多相关文章
- An Introduction to Variational Methods (5.1)
在这篇文章中,我引用Bishop书中的一个例子,来简单介绍一下Variational Methods的应用.想要更详细地理解这个例子,可以参考Bishop的书Pattern Recongnition ...
- An Introduction to Variational Methods (5.2)
我们现在已经得到了关于潜在变量Z的优化分布的表达形式: 其中: 所以现在我们可以得到Z的期望: 另外对于Z还值得一提的是,我们从其优化分布的表达式中可以看出,各个Z的组成部分之间还是相互耦 ...
- 概率主题模型简介 Introduction to Probabilistic Topic Models
此文为David M. Blei所写的<Introduction to Probabilistic Topic Models>的译文,供大家参考. 摘要:概率主题模型是一系列旨在发现隐藏在 ...
- 转:概率主题模型简介 --- ---David M. Blei所写的《Introduction to Probabilistic Topic Models》的译文
概率主题模型简介 Introduction to Probabilistic Topic Models 转:http://www.cnblogs.com/siegfang/archive/2 ...
- PRML读书会第十章 Approximate Inference(近似推断,变分推断,KL散度,平均场, Mean Field )
主讲人 戴玮 (新浪微博: @戴玮_CASIA) Wilbur_中博(1954123) 20:02:04 我们在前面看到,概率推断的核心任务就是计算某分布下的某个函数的期望.或者计算边缘概率分布.条件 ...
- deep learning 的综述
从13年11月初开始接触DL,奈何boss忙or 各种问题,对DL理解没有CSDN大神 比如 zouxy09等 深刻,主要是自己觉得没啥进展,感觉荒废时日(丢脸啊,这么久....)开始开文,即为记录自 ...
- PGM1.1-简介
自己根据Jordan大神的资料写的(算翻译?完全不记得了,这是半年前整理的,反正不记得了,如果大神有看到部分重合,那肯定是我借鉴了人家的,本来是一个群里的人大家兴致高说写DL的书(所以这一章并不是书的 ...
- 机器学习经典论文/survey合集
Active Learning Two Faces of Active Learning, Dasgupta, 2011 Active Learning Literature Survey, Sett ...
- Reading lists for new LISA students(转)
Research in General How to write a great research paper Basics of machine learning http://www.iro.um ...
随机推荐
- python常用标准库
-------------------系统内建函数------------------- 1.字符串 str='这是一个字符串数据测试数据'对应 str[0]:获取str字符串中下标为 ...
- Python有哪些高大上的项目?
Python作为程序员的宠儿,得到了越来越多人的关注,使用Python进行应用程序开发的越来也多.那么,Python有哪些高大上的项目?这里有十个: 1.NuPIC 它是一个以HTM学习算法为工具的 ...
- Project 4:Longest Ordered Subsequence
Problem description A numeric sequence of ai is ordered if a1 < a2 < - < aN. Let the subseq ...
- Mac环境下mysql初始化密码问题--If you lose this password, please consult the section How to Reset the Root Password in the MySQL reference manual.
个人在Mac上操作数据库,遇到的启动数据库问题的简单记录 1.苹果->系统偏好设置->最下边点mysql 在弹出页面中 关闭mysql服务(点击stop mysql server) 2.进 ...
- 201521123084 《Java程序设计》第3周学习总结
1. 本周学习总结 初学面向对象,会学习到很多碎片化的概念与知识.尝试学会使用思维导图将这些碎片化的概念.知识组织起来.请使用纸笔或者下面的工具画出本周学习到的知识点.截图或者拍照上传. 本周学习总结 ...
- week2-结对编程【网页实现四则运算】
题目描述: 不知道大家是否尝试过这样一种开发模式:你有一个伙伴,你们坐在一起,并肩作战,面对着同一台显示器,使用着同一键盘,同一个鼠标,你们一起思考,一起分析,一起编程?这次,就让我们来体验一下结对编 ...
- 201521123082《Java程序设计》第2周学习总结
201521123082<Java程序设计>第2周学习总结 标签(空格分隔): Java 1.本周学习总结 巩固了类型转换的相关细节 初步认识了类和对象,使用Java撰写程序几乎都在使用对 ...
- JSP学习(一)之中文乱码问题的解决
一.响应中的乱码 我们所看到的页面,是由服务器把内容放入响应(response)中,然后发送给浏览器的.如果响应中的数据无法被正常解析,就会出现中文乱码.为什么英文不存在乱码问题?因为无论是ISO-8 ...
- s:textarea 标签不能改变大小的解决方案
在s标签写的form中,无法利用rows="50" cols="75"来改变s:textarea大小,cssClass也不管用时: 直接用普通的textarea ...
- IT连创业系列:创业者逆境下的思维
距上篇文章,又半个多月过去了,是时候来一发阶段性的总结了. 可能最近比较懒,也可能是想不到写文的主题,故写文已变成越来越艰难的一个任务. 这个系列的大标题,也改了:它从<一个想法>到< ...