数据清洗的常用工具--Pandas

  1. 现实中,数据并非完美的,需要进行清洗才能进行后面的数据分析
  2. 数据清洗是整个数据分析项目中最消耗时间的一步
  3. 数据的质量最终决定了数据分析的准确性
  4. 数据清洗是唯一可以提高数据质量的方法,使得数据分析结果也变得更可靠

数据清洗的常用工具


  1. 目前在Python中,numpy和pandas是最主流的工具
  2. Numpy中的向量化运算使得数据处理变得高效
  3. Pandas提供了大量数据清洗的高效方法
  4. 在Python中,尽可能多的使用numpy和pandas中的函数,提高数据清洗的效率

Pandas常用数据结构series和方法


  1. 通过pandas.Series来创建Series数据结构
  2. pandas.Series(data,index,dtype,name)
  • 上述参数:data可以为列表,array/dict

  • 上述参数:index表示索引,必须与数据同长度,name表示对象名称

    import pandas as pd
    import numpy as np series1 = pd.Series([2.8, 3.01, 8.99, 8.59, 5.18])
    series2 = pd.Series([2.8, 3.01, 8.99, 8.59, 5.18], index=['a', 'b', 'c', 'd', 'e'], name='这是一个series')
    series3 = pd.Series(np.array((2.8, 3.10, 8.99, 8.59, 5.18)), index=['a', 'b', 'c', 'd', 'e'])
    series4 = pd.Series({'北京': 2.8, '上海': 3.01, '广东': 8.99, '江苏': 8.59, '浙江': 5.18}) print(series1)
    """
    0 2.80
    1 3.01
    2 8.99
    3 8.59
    4 5.18
    dtype: float64
    """ print(series2)
    """
    a 2.80
    b 3.01
    c 8.99
    d 8.59
    e 5.18
    Name: 这是一个series, dtype: float64
    """
    print(series3)
    """
    a 2.80
    b 3.10
    c 8.99
    d 8.59
    e 5.18
    dtype: float64
    """ print(series4)
    """
    北京 2.80
    上海 3.01
    广东 8.99
    江苏 8.59
    浙江 5.18
    dtype: float64
    """

Pandas常用数据结构dataframe和方法


  • 通过pandas.DataFrame来创建DataFrame数据结构

  • Pandas.DataFrame(data,index,dtype,columns)

  • 上述参数:data可以作为 array/dict

  • 上述参数:index为 行 索引,columns代表列名或者列标签

    import pandas as pd
    import numpy as np list1 = [['张三', 23, '男'], ['李四', 27, '女'], ['王二', 26, '女']] # 使用嵌套列表
    df1 = pd.DataFrame(list1, columns=['姓名', '年龄', '性别'])
    df2 = pd.DataFrame({'姓名': ['张三', '李四', '王二'], '年龄': [23, 27, 26], '性别': ['男', '女', '女']})
    array1 = np.array([['张三', 23, '男'], ['李四', 27, '女'], ['王二', 26, '女']]) # 使用numpy
    df3 = pd.DataFrame(array1, columns=['姓名', '年龄', '性别'], index=['a', 'b', 'c']) print(df1)
    """
    姓名 年龄 性别
    0 张三 23 男
    1 李四 27 女
    2 王二 26 女
    """ print(df2)
    """
    姓名 年龄 性别
    0 张三 23 男
    1 李四 27 女
    2 王二 26 女
    """ print(array1)
    """
    [['张三' '23' '男']
    ['李四' '27' '女']
    ['王二' '26' '女']]
    """ print(df3)
    """
    姓名 年龄 性别
    a 张三 23 男
    b 李四 27 女
    c 王二 26 女
    """

常用方法


  • series和dataframe常用方法
方法名称 说明
values 返回对象所有元素的值
index 返回行索引
dtypes 返回索引
shape 返回对象数据形状
ndim 返回对象的维度
size 返回对象的个数
columns 返回列标签(只对dataframe数据结构)
pyinstaller -F -w demo.py --noconsole

Python数据处理常用工具(pandas)的更多相关文章

  1. 学习笔记:Python序列化常用工具及性能对比

    什么叫序列化?简单来讲就是将内存中的变量数据转而存储到磁盘上或是通过网络传输到远程. 反序列化是指:把变量数据从序列化的对象重新读到内存里. 下面我们一起来看看,python里面序列化常用的json. ...

  2. Python第三方常用工具、库、框架等

    Python ImagingLibrary(PIL):它提供强大的图形处理的能力,并提供广泛的图形文件格式支持,该库能进行图形格式的转换.打印和显示.还能进行一些图形效果的处理,如图形的放大.缩小和旋 ...

  3. python数据处理----常用数据文件的处理

    数据处理时,常用数据存储形式主要有:CSV.JSON.XML.EXCEL.数据库存储. 一.CSV文件 csv文件简介 CSV是一种通用的.相对简单的文件格式,被用户.商业和科学广泛应用.最广泛的应用 ...

  4. python opencv3 —— 常用工具、辅助函数、绘图函数(图像添加文本、矩形等几何形状)

    1. cv2.hconcat().cv2.vconcat() 将从摄像头捕获的多个图像帧,横向(cv2.hconcat)或纵向(cv2.vconcat)拼接到一起,使得可以在一个 window 中进行 ...

  5. (ES6)数据处理常用工具方法收集(更新状态: on)

    1. 扁平数组转成tree结构(来源: StackOverflow的印度老哥写的) // Data Set // One top level comment var comments = [{ id: ...

  6. Python 数据处理库 pandas 入门教程

    Python 数据处理库 pandas 入门教程2018/04/17 · 工具与框架 · Pandas, Python 原文出处: 强波的技术博客 pandas是一个Python语言的软件包,在我们使 ...

  7. Python 数据处理库pandas教程(最后附上pandas_datareader使用实例)

    0 简单介绍 pandas是一个Python语言的软件包,在我们使用Python语言进行机器学习编程的时候,这是一个非常常用的基础编程库.本文是对它的一个入门教程. pandas提供了快速,灵活和富有 ...

  8. Python数据处理进阶——pandas

    对于python进行数据处理来说,pandas式一个不得不用的包,它比numpy很为强大.通过对<利用python进行数据分析>这本书中介绍pandas包的学习,再加以自己的理解,写下这篇 ...

  9. Python 爬虫的工具列表大全

    Python 爬虫的工具列表大全 这个列表包含与网页抓取和数据处理的Python库.网络 通用 urllib -网络库(stdlib). requests -网络库. grab – 网络库(基于pyc ...

随机推荐

  1. Python-pygame案例AI贪吃蛇

    # coding: utf-8 import pygame,sys,time,random from pygame.locals import * # 定义颜色变量 redColour = pygam ...

  2. Golang源码学习:调度逻辑(三)工作线程的执行流程与调度循环

    本文内容主要分为三部分: main goroutine 的调度运行 非 main goroutine 的退出流程 工作线程的执行流程与调度循环. main goroutine 的调度运行 runtim ...

  3. Java——super的使用

    总是忘了,还是记下来吧~~ With super(), the superclass no-argument constructor is called. With super(parameter l ...

  4. [PHP学习教程 - 网络]002.获取网页内容(URL Content)

    引言:获取网页内容是我们实现网页操作的基本之基本,今天这一讲,我们和大家讲一下基本请求网页内容的几种方法. 我们似乎每天都要做这样一件事情,打开一个浏览器,输入网址,回车,一个空白的页面顿时有了东西, ...

  5. python requests用于测试

    https://blog.csdn.net/niedongri/article/details/71404314 https://blog.csdn.net/temanm/article/detail ...

  6. group by和having注意事项

    执行和编写顺序:join->where->group by->having 其中where与having的区别: where用于在group by分组之前过滤掉某些行, group ...

  7. 基于Python豆瓣自动化测试【2】

    -- Pytest基础使用教程[2] 从测试报告说起 承接上一篇中最后的测试结果图,使用过的pytest-html 插件原生态的报告的话.可能会发现 内容样式都有些不同.其实是做了些扩展相关设置所呈现 ...

  8. 《学习scrapy框架爬小说》的进一步完善

    一.完善目标: 1.为方便使用,把小说拼音或英文名,小说输出中文名,第一章节url地址变量化,修改这些参数即可爬取不同的小说. 2.修改settings.py设置文件,配置为记录debug的log信息 ...

  9. 深入了解ConcurrentHashMap

    在上一篇文章[简单了解系列]从基础的使用来深挖HashMap里,我从最基础的使用中介绍了HashMap,大致是JDK1.7和1.8中底层实现的变化,和介绍了为什么在多线程下可能会造成死循环,扩容机智是 ...

  10. 网站的安全性对seo优化至关重要-智狐SEO顾问

    网站的安全性对seo优化至关重要    作者:智狐zhihuseo 从大的范围来看,网站安全性能也属于seo的范畴之一.域名被恶意泛解析就是网站安全性能低下的特征之一,如果网站域名被恶意泛解析,会直接 ...