指挥使走后一脸懵逼,然后想起了一道水\(SB\)的省选题。

这是毒瘤乘法分配率的应用,似乎还有一篇,算是入门题。

对了,这题连接:P2220 [HAOI2012]容易题

然而蒟蒻还是先自闭了一会......

大力代值可知,是一道裸的条件概率。

先处理出\(sum=\sum_{i=1}^{n}\)与\(sum^n\)(这是用分配率推导的,我这里不用了,就是无限制条件下的最大值),在处理每个被影响的区块就好了,就是乘上

\[\dfrac{{sum-\sum_{i=\text{被限制的数}}i}}{sum}
\]

这里被限制的数只有\(k\in[1,1e5]\)个,暴力一下即可,注意要排序和去重!!

那么这样的复杂度就是\(O(k\log k)\)的,可以通过本题。


我下面说个问题,其实此题已解决了,不过......

显然要求出\(sum\)在模\(1e9+7\)意义下的逆元,那么这个数一定存在吗?

即求:

\[(1e9+7)k=\dfrac{n(n+1)}{2}\;\;\;k\in Z
\]

是否在数据范围内存在正整数解\(k\)。

显然\(1e9+7\)是质数,那么\(n\)和\(n+1\)一个中显然有因子\(1e9+7\),而且另一个数是偶数,那么易得\(n_{min}=1e9+7>1e9\),是没问题的。

下面上代码了:

\(Code\):

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
using namespace std;
const int MAXN=100005;
const int MOD=1000000007;
typedef long long ll;
inline long long mul(long long x,long long y,long long mod)
{
long long tmp=(x*y-(long long)((long double)x/mod*y+1.0e-8)*mod);
return tmp<0 ? tmp+mod : tmp;
}//数据不小,加上保险
struct node
{
ll id,val;
}a[MAXN],b[MAXN];
bool cmp(node n,node m){if(n.id^m.id) return n.id<m.id;else return n.val<m.val;}
ll n,m,k,cnt=0;
ll sum,inv,s;
ll quickpow(ll a,ll b)
{
ll base=a%MOD,ans=1;
while(b)
{
if(b&1) ans=mul(ans,base,MOD);
b>>=1;
base=mul(base,base,MOD);
}
return ans%MOD;
}
ll get_inv(ll x){return quickpow(x,1000000005)%MOD;}
void hack()//真坑~去重
{
for(int i=1;i<=k;i++)
{
if(a[i].id==b[cnt].id&&a[i].val==b[cnt].val) continue;
else b[++cnt]=a[i];
}
}
void work()
{
sum=n*(n+1)/2;
sort(a+1,a+k+1,cmp);
hack();
inv=get_inv(sum)%MOD;
s=quickpow(sum,m);
int l=0;
ll now=sum;
for(int i=1;i<=cnt;i++)
{
if(b[i].id==b[l].id) now-=b[i].val;
else
{
s=mul(s,mul(inv,now,MOD),MOD)%MOD;
now=sum-b[i].val;
l=i;
}
}
s=mul(s,mul(inv,now,MOD),MOD)%MOD;//最后还剩下一组
return;
}
int main()
{
scanf("%lld%lld%lld",&n,&m,&k);
//正确思路挂成70pts,原因:
//n,m还要是long long否则后边求sum时得到的还是int
for(int i=1;i<=k;i++) scanf("%lld%lld",&a[i].id,&a[i].val);
work();
cout<<s%MOD<<"\n";
return 0;
}

解题报告:luogu P2220的更多相关文章

  1. 【解题报告】洛谷 P2571 [SCOI2010]传送带

    [解题报告]洛谷 P2571 [SCOI2010]传送带今天无聊,很久没有做过题目了,但是又不想做什么太难的题目,所以就用洛谷随机跳题,跳到了一道题目,感觉好像不是太难. [CSDN链接](https ...

  2. NOIP 2018 普及组 解题报告

    目录 标题统计 题目链接 思路 代码 龙虎斗 题目链接: 思路 代码 摆渡车 题目链接: 思路 对称二叉树 题目链接 思路: 先来解释一下为毛现在才来发解题报告: 其实博主是参加过NOIP 2018普 ...

  3. CH Round #56 - 国庆节欢乐赛解题报告

    最近CH上的比赛很多,在此会全部写出解题报告,与大家交流一下解题方法与技巧. T1 魔幻森林 描述 Cortana来到了一片魔幻森林,这片森林可以被视作一个N*M的矩阵,矩阵中的每个位置上都长着一棵树 ...

  4. 二模13day1解题报告

    二模13day1解题报告 T1.发射站(station) N个发射站,每个发射站有高度hi,发射信号强度vi,每个发射站的信号只会被左和右第一个比他高的收到.现在求收到信号最强的发射站. 我用了时间复 ...

  5. BZOJ 1051 最受欢迎的牛 解题报告

    题目直接摆在这里! 1051: [HAOI2006]受欢迎的牛 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 4438  Solved: 2353[S ...

  6. 习题:codevs 2822 爱在心中 解题报告

    这次的解题报告是有关tarjan算法的一道思维量比较大的题目(真的是原创文章,希望管理员不要再把文章移出首页). 这道题蒟蒻以前做过,但是今天由于要复习tarjan算法,于是就看到codevs分类强联 ...

  7. 习题:codevs 1035 火车停留解题报告

    本蒟蒻又来写解题报告了.这次的题目是codevs 1035 火车停留. 题目大意就是给m个火车的到达时间.停留时间和车载货物的价值,车站有n个车道,而火车停留一次车站就会从车载货物价值中获得1%的利润 ...

  8. 习题: codevs 2492 上帝造题的七分钟2 解题报告

    这道题是受到大犇MagHSK的启发我才得以想出来的,蒟蒻觉得自己的代码跟MagHSK大犇的代码完全比不上,所以这里蒟蒻就套用了MagHSK大犇的代码(大家可以关注下我的博客,友情链接就是大犇MagHS ...

  9. 习题:codevs 1519 过路费 解题报告

    今天拿了这道题目练练手,感觉自己代码能力又增强了不少: 我的思路跟别人可能不一样. 首先我们很容易就能看出,我们需要的边就是最小生成树算法kruskal算法求出来的边,其余的边都可以删掉,于是就有了这 ...

  10. NOIP2016提高组解题报告

    NOIP2016提高组解题报告 更正:NOIP day1 T2天天爱跑步 解题思路见代码. NOIP2016代码整合

随机推荐

  1. Flask 学习之 路由

    一.路由的基本定义 # 指定访问路径为 demo1 @app.route('/demo1') def demo1(): return 'demo1' 二.常用路由设置方式 @app.route('/u ...

  2. .NET平台性能测试工具BenchmarkDotnet 简介[译文]

    项目中需要用到性能测试,发现.net 平台的这个神器. 觉得很不错,接下来准备做个系列.具体参考官方介绍 做基线对比测试不是那么容易,你很容易就翻车掉坑里,BenchmarkDotNet 会帮你避坑( ...

  3. acm数论之旅--中国剩余定理

    ACM数论之旅9---中国剩余定理(CRT)(壮哉我大中华╰(*°▽°*)╯)   中国剩余定理,又名孙子定理o(*≧▽≦)ツ 能求解什么问题呢? 问题: 一堆物品 3个3个分剩2个 5个5个分剩3个 ...

  4. innerAudiocontext的坑

    链接:https://blog.csdn.net/sourcemyx/article/details/79424004 像wx.onNetworkStatusChange(function(){})回 ...

  5. 吴裕雄 PYTHON 神经网络——TENSORFLOW 单隐藏层自编码器设计处理MNIST手写数字数据集并使用TensorBord描绘神经网络数据

    import os import numpy as np import tensorflow as tf import matplotlib.pyplot as plt from tensorflow ...

  6. java平衡二叉树AVL数

    平衡二叉树(Balanced Binary Tree)具有以下性质:它是一棵空树或它的左右两个子树的高度差的绝对值不超过1,并且左右两个子树都是一棵平衡二叉树 右旋:在插入二叉树的时候,根节点的右侧高 ...

  7. 分布式一致性协议 --- Paxos

    问题 Paxos 到底解决什么样的问题,动机是什么 Paxos 流程是怎么样的? Paxos 算法的缺陷是什么 概述 Paxos 是分布式一致性算法,根据少数服从多数的原则多个节点确定某个数值.通过学 ...

  8. ASP.NET CORE 基础知识(一):概述【上】

    此为系列文章,对MSDN ASP.NET Core 的官方文档进行系统学习与翻译.其中或许会添加本人对 ASP.NET Core 的浅显理解 原文请参考MSDN ASP.NET Core. 这篇文章是 ...

  9. Hadoop学习笔记(三):分布式文件系统的写和读流程

    写流程:怎么将文件切割成块,上传到服务器 读流程:怎么从不同的服务器来读取数据块 写流程 图一 图二 写的过程中:NameNode会给块分配存储块的位置,每次想要存储文件的时候都会在NameNode创 ...

  10. C的精神

    信任程序员 不要妨碍程序员做需要做的事 保持语言精练简单 只提供一种方法执行一项操作 让程序运行更快, 即使不能保证其可移植性 在最后一点上, 标准委员会的用意是: 作为实现, 应该针对目标计算机来定 ...