题目传送门

这是一道数位DP

令 \(dp_{i,j,k}\) 为满足由 \(i\) 位组成,且其中有 \(j\) 个1,第 i 位(从右往左数)为 \(k\) 的二进制数的数量。

可以得出状态转移方程:

\(dp_{i,j,0}=dp_{i-1,j,1}+dp_{i-1,j,0}\;(2\le i,0\le j< i)\)

\(dp_{i,j,1}=dp_{i-1,j-1,0}+dp_{i-1,j-1,1}\;(2\le i,0<j\le i)\)

边界:\(dp_{1,0,0}=1,dp_{1,1,1}=1\)

对于 \(dp_{i,j,k}\),如果满足 \(1\le i,0\le j\le \lfloor \frac{i}{2}\rfloor\),则这个状态是合法的。因为0的个数为 \(i-j\),要满足 \(j\le i-j\),则 \(2j\le i\) 所以 \(j\le \lfloor \frac{i}{2}\rfloor\)

令 \(f(x)\) 为区间 \([1,x-1]\) 内的“圆数”个数,则区间 \([L,R]\) 内的“圆数”个数为 \(f(R+1)-f(L)\)。

对于求\(f(x)\),我们先将 \(x\) 转换成二进制,设其二进制位数为 \(len\)。

  1. 将二进制位数小于 \(len\) 的“圆数”个数统计到答案中。这时,对于 \(dp_{i,j,k}\),如果满足 \(1\le i,0\le j\le \lfloor \frac{i}{2}\rfloor\),则这个状态是合法的。因为0的个数为 \(i-j\),要满足 \(j\le i-j\),则 \(2j\le i\) 所以 \(j\le \lfloor \frac{i}{2}\rfloor\)

  2. 对于 \(x\) 的二进制除首位外的每一位 \(i\),都判断其是否为1 。如果为1,说明存在一些数,它们长度为 \(len\),值小于 \(x\),且二进制表示中的前 \(i-1\) 位与 \(x\) 相同,第 \(i\) 位为0 。然后将这些数中的“圆数”个数加入答案即可。这时,判断一个状态是否合法,需要考虑前 \(i-1\)位中0和1的个数。

参考代码

略微压行,轻喷。

#include <cstdio>
#include <cstring> using namespace std; #define in __inline__
typedef long long ll;
#define rei register int
#define FOR(i, l, r) for(rei i = l; i <= r; ++i)
#define FOL(i, r, l) for(rei i = r; i >= l; --i)
char inputbuf[1 << 23], *p1 = inputbuf, *p2 = inputbuf;
#define getchar() (p1 == p2 && (p2 = (p1 = inputbuf) + fread(inputbuf, 1, 1 << 21, stdin), p1 == p2) ? EOF : *p1++)
in int read() {
int res = 0; char ch = getchar(); bool f = true;
for(; ch < '0' || ch > '9'; ch = getchar())
if(ch == '-') f = false;
for(; ch >= '0' && ch <= '9'; ch = getchar())
res = res * 10 + (ch ^ 48);
return f ? res : -res;
}
const int N = 40; ll dp[N][N][2];
int a, b, A[N], la, lb, B[N]; ll solve(int x[], int len) {
ll res = 0; int s0 = 0, s1 = 1;
//s0表示0的个数,s1表示1的个数
FOL(i, len - 1, 1) FOR(j, 0, (i >> 1)) res += dp[i][j][1];//第1类数
FOL(i, len - 1, 1) {//第二类数
if(x[i]) FOR(j, 0, i) if(s0 + i - j >= s1 + j) res += dp[i][j][0];
//s0+i-j表首位至当前位0的个数,s1+j表首位至当前位1的个数,注意j要枚举至i
x[i] ? (++s1) : (++s0);
}
return res;
} signed main() {
a = read(), b = read();
for(; a; a >>= 1) A[++la] = a & 1;
for(; b; b >>= 1) B[++lb] = b & 1;//转换成二进制
++B[1];
for(rei i = 2; i <= lb && B[i - 1] == 2; ++i) B[i - 1] = 0, ++B[i];
if(B[lb] == 2) B[lb] = 0, B[++lb] = 1;
while(!A[la]) --la;
while(!B[lb]) --lb;//给B加上1
dp[1][0][0] = dp[1][1][1] = 1;
FOR(i, 2, lb) FOR(j, 0, i) {//DP
if(j < i) dp[i][j][0] = dp[i - 1][j][1] + dp[i - 1][j][0];
if(j) dp[i][j][1] = dp[i - 1][j - 1][0] + dp[i - 1][j - 1][1];
}
printf("%lld\n", solve(B, lb) - solve(A, la));
return 0;//结束
}

【题解】P6218 [USACO06NOV] Round Numbers S的更多相关文章

  1. 洛谷 P6218 [USACO06NOV] Round Numbers S

    洛谷 P6218 [USACO06NOV] Round Numbers S 题目描述 如果一个正整数的二进制表示中,\(0\) 的数目不小于 \(1\) 的数目,那么它就被称为「圆数」. 例如,\(9 ...

  2. POJ 3252 Round Numbers 数学题解

    Description The cows, as you know, have no fingers or thumbs and thus are unable to play Scissors, P ...

  3. 题解【POJ3252】Round Numbers

    Description The cows, as you know, have no fingers or thumbs and thus are unable to play Scissors, P ...

  4. 【BZOJ1662】[Usaco2006 Nov]Round Numbers 圆环数 数位DP

    [BZOJ1662][Usaco2006 Nov]Round Numbers 圆环数 Description 正如你所知,奶牛们没有手指以至于不能玩"石头剪刀布"来任意地决定例如谁 ...

  5. [BZOJ1662][POJ3252]Round Numbers

    [POJ3252]Round Numbers 试题描述 The cows, as you know, have no fingers or thumbs and thus are unable to ...

  6. Round Numbers(组合数学)

    Round Numbers Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 10484 Accepted: 3831 Descri ...

  7. bzoj1662: [Usaco2006 Nov]Round Numbers 圆环数

    Description 正如你所知,奶牛们没有手指以至于不能玩“石头剪刀布”来任意地决定例如谁先挤奶的顺序.她们甚至也不能通过仍硬币的方式. 所以她们通过"round number" ...

  8. BZOJ1662: [Usaco2006 Nov]Round Numbers

    1662: [Usaco2006 Nov]Round Numbers Time Limit: 5 Sec  Memory Limit: 64 MBSubmit: 147  Solved: 84[Sub ...

  9. 【BZOJ】1662: [Usaco2006 Nov]Round Numbers 圆环数(数位dp)

    http://www.lydsy.com/JudgeOnline/problem.php?id=1662 这道题折腾了我两天啊-!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 果然 ...

随机推荐

  1. 刷短视频看新闻看小说也能赚钱的几款APP

    一.抖音极速版 发啦! 刷短视频也能赚钱 第1步:下载[抖音极速版] 第2步:填我邀请码[831008243] 第3步:立刻提现最高[38元]红包 二.今日头条极速版 1元现金速撸 下载[今日头条极速 ...

  2. HTML 页面跳转的五种方法

    H方法TML 页面跳转的五种方法 下面列了五个例子来详细说明,这几个例子的主要功能是:在5秒后,自动跳转到同目录下的hello.html(根据自己需要自行修改)文件.1) html的实现 <he ...

  3. shell之路 shell核心语法【第三篇】运算

    Bash 支持很多运算符,包括算数运算符.关系运算符.布尔运算符.字符串运算符和文件测试运算符. 原生bash不支持简单的数学运算,默认都是字符串操作,但是可以通过其他命令来实现 算数运算 expr. ...

  4. andorid jar/库源码解析之Bolts

    目录:andorid jar/库源码解析 Bolts: 作用: 用于链式执行跨线程代码,且传递数据 栗子: Task.call(new Callable<Boolean>() { @Ove ...

  5. golang关键字select的三个例子, time.After模拟socket/心跳超时

    golang关键字select的三个例子, time.After模拟socket/心跳超时   例子1 select会随机选择一个可执行的case   // 这个例子主要说明select是随机选择一个 ...

  6. LeetCode--Sort Array By Parity && N-Repeated Element in Size 2N Array (Easy)

    905. Sort Array By Parity (Easy)# Given an array A of non-negative integers, return an array consist ...

  7. hadoop文件系统常用操作

    详细可参考hadoop官方文档filesystem shell一节 使用hadoop离不开文件系统,比如hdfs,我们可能需要从hdfs中读取文件作为输入,并将输出保存到hdfs上某个文件中 首先创建 ...

  8. 【Poj-3693】Maximum repetition substring 后缀数组 连续重复子串

    POJ - 3693 题意 SPOJ - REPEATS的进阶版,在这题的基础上输出字典序最小的重复字串. 思路 跟上题一样,先求出最长的重复次数,在求的过程中顺便纪录最多次数可能的长度. 因为sa数 ...

  9. Mysql 常用语句实战(3)

    前置 sql 语句 用来创建表.插入数据 ; DROP TABLE IF EXISTS dept_;-- 部门表 DROP TABLE IF EXISTS emp_;-- 部门表 ; SELECT @ ...

  10. 使用Python创建一个系统监控程序--李渣渣(lizaza.cn)

    最近在做个人网站,但是由于服务器资源不足,偶尔会出现系统崩溃的现象,所以想写一个程序来实时监控系统状态.当系统资源占用过高时发送邮件提醒. psutil(进程和系统实用程序)是一个跨平台的库,用于检索 ...