题目传送门

这是一道数位DP

令 \(dp_{i,j,k}\) 为满足由 \(i\) 位组成,且其中有 \(j\) 个1,第 i 位(从右往左数)为 \(k\) 的二进制数的数量。

可以得出状态转移方程:

\(dp_{i,j,0}=dp_{i-1,j,1}+dp_{i-1,j,0}\;(2\le i,0\le j< i)\)

\(dp_{i,j,1}=dp_{i-1,j-1,0}+dp_{i-1,j-1,1}\;(2\le i,0<j\le i)\)

边界:\(dp_{1,0,0}=1,dp_{1,1,1}=1\)

对于 \(dp_{i,j,k}\),如果满足 \(1\le i,0\le j\le \lfloor \frac{i}{2}\rfloor\),则这个状态是合法的。因为0的个数为 \(i-j\),要满足 \(j\le i-j\),则 \(2j\le i\) 所以 \(j\le \lfloor \frac{i}{2}\rfloor\)

令 \(f(x)\) 为区间 \([1,x-1]\) 内的“圆数”个数,则区间 \([L,R]\) 内的“圆数”个数为 \(f(R+1)-f(L)\)。

对于求\(f(x)\),我们先将 \(x\) 转换成二进制,设其二进制位数为 \(len\)。

  1. 将二进制位数小于 \(len\) 的“圆数”个数统计到答案中。这时,对于 \(dp_{i,j,k}\),如果满足 \(1\le i,0\le j\le \lfloor \frac{i}{2}\rfloor\),则这个状态是合法的。因为0的个数为 \(i-j\),要满足 \(j\le i-j\),则 \(2j\le i\) 所以 \(j\le \lfloor \frac{i}{2}\rfloor\)

  2. 对于 \(x\) 的二进制除首位外的每一位 \(i\),都判断其是否为1 。如果为1,说明存在一些数,它们长度为 \(len\),值小于 \(x\),且二进制表示中的前 \(i-1\) 位与 \(x\) 相同,第 \(i\) 位为0 。然后将这些数中的“圆数”个数加入答案即可。这时,判断一个状态是否合法,需要考虑前 \(i-1\)位中0和1的个数。

参考代码

略微压行,轻喷。

#include <cstdio>
#include <cstring> using namespace std; #define in __inline__
typedef long long ll;
#define rei register int
#define FOR(i, l, r) for(rei i = l; i <= r; ++i)
#define FOL(i, r, l) for(rei i = r; i >= l; --i)
char inputbuf[1 << 23], *p1 = inputbuf, *p2 = inputbuf;
#define getchar() (p1 == p2 && (p2 = (p1 = inputbuf) + fread(inputbuf, 1, 1 << 21, stdin), p1 == p2) ? EOF : *p1++)
in int read() {
int res = 0; char ch = getchar(); bool f = true;
for(; ch < '0' || ch > '9'; ch = getchar())
if(ch == '-') f = false;
for(; ch >= '0' && ch <= '9'; ch = getchar())
res = res * 10 + (ch ^ 48);
return f ? res : -res;
}
const int N = 40; ll dp[N][N][2];
int a, b, A[N], la, lb, B[N]; ll solve(int x[], int len) {
ll res = 0; int s0 = 0, s1 = 1;
//s0表示0的个数,s1表示1的个数
FOL(i, len - 1, 1) FOR(j, 0, (i >> 1)) res += dp[i][j][1];//第1类数
FOL(i, len - 1, 1) {//第二类数
if(x[i]) FOR(j, 0, i) if(s0 + i - j >= s1 + j) res += dp[i][j][0];
//s0+i-j表首位至当前位0的个数,s1+j表首位至当前位1的个数,注意j要枚举至i
x[i] ? (++s1) : (++s0);
}
return res;
} signed main() {
a = read(), b = read();
for(; a; a >>= 1) A[++la] = a & 1;
for(; b; b >>= 1) B[++lb] = b & 1;//转换成二进制
++B[1];
for(rei i = 2; i <= lb && B[i - 1] == 2; ++i) B[i - 1] = 0, ++B[i];
if(B[lb] == 2) B[lb] = 0, B[++lb] = 1;
while(!A[la]) --la;
while(!B[lb]) --lb;//给B加上1
dp[1][0][0] = dp[1][1][1] = 1;
FOR(i, 2, lb) FOR(j, 0, i) {//DP
if(j < i) dp[i][j][0] = dp[i - 1][j][1] + dp[i - 1][j][0];
if(j) dp[i][j][1] = dp[i - 1][j - 1][0] + dp[i - 1][j - 1][1];
}
printf("%lld\n", solve(B, lb) - solve(A, la));
return 0;//结束
}

【题解】P6218 [USACO06NOV] Round Numbers S的更多相关文章

  1. 洛谷 P6218 [USACO06NOV] Round Numbers S

    洛谷 P6218 [USACO06NOV] Round Numbers S 题目描述 如果一个正整数的二进制表示中,\(0\) 的数目不小于 \(1\) 的数目,那么它就被称为「圆数」. 例如,\(9 ...

  2. POJ 3252 Round Numbers 数学题解

    Description The cows, as you know, have no fingers or thumbs and thus are unable to play Scissors, P ...

  3. 题解【POJ3252】Round Numbers

    Description The cows, as you know, have no fingers or thumbs and thus are unable to play Scissors, P ...

  4. 【BZOJ1662】[Usaco2006 Nov]Round Numbers 圆环数 数位DP

    [BZOJ1662][Usaco2006 Nov]Round Numbers 圆环数 Description 正如你所知,奶牛们没有手指以至于不能玩"石头剪刀布"来任意地决定例如谁 ...

  5. [BZOJ1662][POJ3252]Round Numbers

    [POJ3252]Round Numbers 试题描述 The cows, as you know, have no fingers or thumbs and thus are unable to ...

  6. Round Numbers(组合数学)

    Round Numbers Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 10484 Accepted: 3831 Descri ...

  7. bzoj1662: [Usaco2006 Nov]Round Numbers 圆环数

    Description 正如你所知,奶牛们没有手指以至于不能玩“石头剪刀布”来任意地决定例如谁先挤奶的顺序.她们甚至也不能通过仍硬币的方式. 所以她们通过"round number" ...

  8. BZOJ1662: [Usaco2006 Nov]Round Numbers

    1662: [Usaco2006 Nov]Round Numbers Time Limit: 5 Sec  Memory Limit: 64 MBSubmit: 147  Solved: 84[Sub ...

  9. 【BZOJ】1662: [Usaco2006 Nov]Round Numbers 圆环数(数位dp)

    http://www.lydsy.com/JudgeOnline/problem.php?id=1662 这道题折腾了我两天啊-!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 果然 ...

随机推荐

  1. 使用Jexus 容器化您的 Blazor 应用程序

    在本文中,我们将介绍如何将 Blazor 应用程序放入Jexus 容器以进行开发和部署.我们将使用 .NET Core  CLI,因此无论平台如何,使用的命令都将是相同的. Blazor 托管模型 B ...

  2. 编译原理-第四章 语法分析-4.7 规范的LR分析

    规范的LR分析 一.规范LR(l)项 二.规范LR(l)项集族 1.构建项目集 2.例 三.规范LR(1)语法分析表 1.构造 2.例1 3.例2 四.LALR语法分析表 1.重要性 2.特点 3.构 ...

  3. 【Java8新特性】Lambda表达式基础语法,都在这儿了!!

    写在前面 前面积极响应读者的需求,写了两篇Java新特性的文章.有小伙伴留言说:感觉Lambda表达式很强大啊!一行代码就能够搞定那么多功能!我想学习下Lambda表达式的语法,可以吗?我的回答是:没 ...

  4. D. Equalize the Remainders set的使用+思维

    D. Equalize the Remainders set的学习::https://blog.csdn.net/byn12345/article/details/79523516 注意set的end ...

  5. django 整理数据库文档时,从mysql导出的表中没有注释的解决方案

    公司要将Django项目重构成Java项目,也就有了整理数据库文档的经历....... 由于django从model迁移时没有将注释(也就是模型类中的verbose_name)写进mysql的表中,导 ...

  6. Android ListView 代码1

    目录 ListView效果 一.ListView的简单用法 二.定制ListView的界面 目标 步骤 1.定义一个实体类作为ListView适配器的适配对象. 2.为ListView的子项指定我们的 ...

  7. xml(4)

    schema约束 dtd语法:<!ELEMENT 元素名称 约束> schema符合xml的语法,xml语句 一个xml中可以有多个schema,多个schema用名称空间区分(类似jav ...

  8. js--bom对象

    bom:browser object model **navigator:获取浏览器的信息 **screen:获取屏幕的相关信息 **location:请求的url地址 **获取请求的url地址:lo ...

  9. 学习ASP.NET Core(05)-使用Swagger与Jwt授权

    上一篇我们使用IOC容器解决了依赖问题,同时简单配置了WebApi环境,本章我们使用一下Swagger,并通过Jwt完成授权 一.Swagger的使用 1.什么是Swagger 前后端分离项目中,后端 ...

  10. 使用 PyCharm 添加 Django 项目

    一.前置准备(PyCharm与Python的下载,已有的跳过) 1.首先下载PyCharm 地址:http://www.jetbrains.com/pycharm/ 2.然后下载Python 地址:h ...