【题解】P6218 [USACO06NOV] Round Numbers S
这是一道数位DP。
令 \(dp_{i,j,k}\) 为满足由 \(i\) 位组成,且其中有 \(j\) 个1,第 i 位(从右往左数)为 \(k\) 的二进制数的数量。
可以得出状态转移方程:
\(dp_{i,j,0}=dp_{i-1,j,1}+dp_{i-1,j,0}\;(2\le i,0\le j< i)\)
\(dp_{i,j,1}=dp_{i-1,j-1,0}+dp_{i-1,j-1,1}\;(2\le i,0<j\le i)\)
边界:\(dp_{1,0,0}=1,dp_{1,1,1}=1\)
对于 \(dp_{i,j,k}\),如果满足 \(1\le i,0\le j\le \lfloor \frac{i}{2}\rfloor\),则这个状态是合法的。因为0的个数为 \(i-j\),要满足 \(j\le i-j\),则 \(2j\le i\) 所以 \(j\le \lfloor \frac{i}{2}\rfloor\)
令 \(f(x)\) 为区间 \([1,x-1]\) 内的“圆数”个数,则区间 \([L,R]\) 内的“圆数”个数为 \(f(R+1)-f(L)\)。
对于求\(f(x)\),我们先将 \(x\) 转换成二进制,设其二进制位数为 \(len\)。
将二进制位数小于 \(len\) 的“圆数”个数统计到答案中。这时,对于 \(dp_{i,j,k}\),如果满足 \(1\le i,0\le j\le \lfloor \frac{i}{2}\rfloor\),则这个状态是合法的。因为0的个数为 \(i-j\),要满足 \(j\le i-j\),则 \(2j\le i\) 所以 \(j\le \lfloor \frac{i}{2}\rfloor\)
对于 \(x\) 的二进制除首位外的每一位 \(i\),都判断其是否为1 。如果为1,说明存在一些数,它们长度为 \(len\),值小于 \(x\),且二进制表示中的前 \(i-1\) 位与 \(x\) 相同,第 \(i\) 位为0 。然后将这些数中的“圆数”个数加入答案即可。这时,判断一个状态是否合法,需要考虑前 \(i-1\)位中0和1的个数。
参考代码
略微压行,轻喷。
#include <cstdio>
#include <cstring>
using namespace std;
#define in __inline__
typedef long long ll;
#define rei register int
#define FOR(i, l, r) for(rei i = l; i <= r; ++i)
#define FOL(i, r, l) for(rei i = r; i >= l; --i)
char inputbuf[1 << 23], *p1 = inputbuf, *p2 = inputbuf;
#define getchar() (p1 == p2 && (p2 = (p1 = inputbuf) + fread(inputbuf, 1, 1 << 21, stdin), p1 == p2) ? EOF : *p1++)
in int read() {
int res = 0; char ch = getchar(); bool f = true;
for(; ch < '0' || ch > '9'; ch = getchar())
if(ch == '-') f = false;
for(; ch >= '0' && ch <= '9'; ch = getchar())
res = res * 10 + (ch ^ 48);
return f ? res : -res;
}
const int N = 40;
ll dp[N][N][2];
int a, b, A[N], la, lb, B[N];
ll solve(int x[], int len) {
ll res = 0; int s0 = 0, s1 = 1;
//s0表示0的个数,s1表示1的个数
FOL(i, len - 1, 1) FOR(j, 0, (i >> 1)) res += dp[i][j][1];//第1类数
FOL(i, len - 1, 1) {//第二类数
if(x[i]) FOR(j, 0, i) if(s0 + i - j >= s1 + j) res += dp[i][j][0];
//s0+i-j表首位至当前位0的个数,s1+j表首位至当前位1的个数,注意j要枚举至i
x[i] ? (++s1) : (++s0);
}
return res;
}
signed main() {
a = read(), b = read();
for(; a; a >>= 1) A[++la] = a & 1;
for(; b; b >>= 1) B[++lb] = b & 1;//转换成二进制
++B[1];
for(rei i = 2; i <= lb && B[i - 1] == 2; ++i) B[i - 1] = 0, ++B[i];
if(B[lb] == 2) B[lb] = 0, B[++lb] = 1;
while(!A[la]) --la;
while(!B[lb]) --lb;//给B加上1
dp[1][0][0] = dp[1][1][1] = 1;
FOR(i, 2, lb) FOR(j, 0, i) {//DP
if(j < i) dp[i][j][0] = dp[i - 1][j][1] + dp[i - 1][j][0];
if(j) dp[i][j][1] = dp[i - 1][j - 1][0] + dp[i - 1][j - 1][1];
}
printf("%lld\n", solve(B, lb) - solve(A, la));
return 0;//结束
}
【题解】P6218 [USACO06NOV] Round Numbers S的更多相关文章
- 洛谷 P6218 [USACO06NOV] Round Numbers S
洛谷 P6218 [USACO06NOV] Round Numbers S 题目描述 如果一个正整数的二进制表示中,\(0\) 的数目不小于 \(1\) 的数目,那么它就被称为「圆数」. 例如,\(9 ...
- POJ 3252 Round Numbers 数学题解
Description The cows, as you know, have no fingers or thumbs and thus are unable to play Scissors, P ...
- 题解【POJ3252】Round Numbers
Description The cows, as you know, have no fingers or thumbs and thus are unable to play Scissors, P ...
- 【BZOJ1662】[Usaco2006 Nov]Round Numbers 圆环数 数位DP
[BZOJ1662][Usaco2006 Nov]Round Numbers 圆环数 Description 正如你所知,奶牛们没有手指以至于不能玩"石头剪刀布"来任意地决定例如谁 ...
- [BZOJ1662][POJ3252]Round Numbers
[POJ3252]Round Numbers 试题描述 The cows, as you know, have no fingers or thumbs and thus are unable to ...
- Round Numbers(组合数学)
Round Numbers Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 10484 Accepted: 3831 Descri ...
- bzoj1662: [Usaco2006 Nov]Round Numbers 圆环数
Description 正如你所知,奶牛们没有手指以至于不能玩“石头剪刀布”来任意地决定例如谁先挤奶的顺序.她们甚至也不能通过仍硬币的方式. 所以她们通过"round number" ...
- BZOJ1662: [Usaco2006 Nov]Round Numbers
1662: [Usaco2006 Nov]Round Numbers Time Limit: 5 Sec Memory Limit: 64 MBSubmit: 147 Solved: 84[Sub ...
- 【BZOJ】1662: [Usaco2006 Nov]Round Numbers 圆环数(数位dp)
http://www.lydsy.com/JudgeOnline/problem.php?id=1662 这道题折腾了我两天啊-!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 果然 ...
随机推荐
- 04 全局局部配置 wxml数据绑定 事件 冒泡
一. 配置介绍 一个小程序应用程序会包括最基本的两种配置文件.一种是全局的 app.json 和 页面自己的 page.json(index.json /test.json等) 注意:配置文件中不能出 ...
- SQLite使用(二)
sqlite3_exec虽然好用,但是一般不推荐直接使用. 常用的一组操作是: 关于sqlite3_exec和sqlite3_prepare_v2的使用场景,建议如下: 一个小DEMO: #inclu ...
- GCRoots
JVM面试汇总 JVM垃圾回收的时候如何确定垃圾?是否知道什么是GC Roots 什么是垃圾 简单来说就是内存中已经不再被使用的空间就是垃圾 如何判断一个对象是否可以被回收 引用计数法 Java中,引 ...
- Unity 游戏框架搭建 2019 (四十四、四十五) 关于知识库的小结&独立的方法和独立的类
在上一篇,我们完成了一个定时功能,并且接触了 Action 和委托.lambda 表达式这些概念. 到目前为止,我们的库作为知识收录这个功能来说,已经非常好用了,由于使用了 partial 关键字,所 ...
- Java——多线程之Lock锁
Java多线系列文章是Java多线程的详解介绍,对多线程还不熟悉的同学可以先去看一下我的这篇博客Java基础系列3:多线程超详细总结,这篇博客从宏观层面介绍了多线程的整体概况,接下来的几篇文章是对多线 ...
- Shell简单实现多线程
一.目的 解决Shell脚本单线程下效率低下的问题 二.适用场景 需要在Linux系统执行同一项命令,但是针对不同的对象,例如PING检测主机,当然可以延展,只要是命令之间不会产生冲突就可以了 ...
- hdu1074之状压dp
#include <iostream> #include <cstdio> #include <cstring> using namespace std; cons ...
- leetCode刷题 | 两数之和
两数之和: 给定一个整数数组 nums 和一个目标值 target,请你在该数组中找出和为目标值的那 两个 整数,并返回他们的数组下标. 你可以假设每种输入只会对应一个答案.但是,你不能重复利用这个数 ...
- 在windows环境里,用Docker搭建Redis开发环境(新书第一个章节)
大家都知道高并发分布式组件的重要性,而且如果要进大厂,这些技术不可或缺.但这些技术的学习难点在于,大多数项目里的分布式组件,都是搭建在Linux系统上,在自己的windows机器上很难搭建开发环境,如 ...
- 数据结构之栈(stack)的实现
一.栈 1.定义 栈的英文为(stack),是一种数据结构 栈是一个先入后出(FILO-First In Last Out)的有序列表. 栈(stack)是限制线性表中元素的插入和删除只能在线性表的同 ...