题意:给一个正整数n,求n的拆分方法数(不考虑顺序)

思路:不妨考虑用1~n来构成n。用多项式表示单个数所有能构成的数,用多项式表示,就相当于卷积运算了。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
#include <map>
#include <set>
#include <cmath>
#include <ctime>
#include <deque>
#include <queue>
#include <vector>
#include <cstdio>
#include <string>
#include <cstdlib>
#include <cstring>
#include <iostream>
#include <algorithm>
 
using namespace std;
 
#define X                   first
#define Y                   second
#define pb                  push_back
#define mp                  make_pair
#define all(a)              (a).begin(), (a).end()
#define fillchar(a, x)      memset(a, x, sizeof(a))
 
typedef long long ll;
typedef pair<intint> pii;
typedef unsigned long long ull;
 
#ifndef ONLINE_JUDGE
void RI(vector<int>&a,int n){a.resize(n);for(int i=0;i<n;i++)scanf("%d",&a[i]);}
void RI(){}void RI(int&X){scanf("%d",&X);}template<typename...R>
void RI(int&f,R&...r){RI(f);RI(r...);}void RI(int*p,int*q){int d=p<q?1:-1;
while(p!=q){scanf("%d",p);p+=d;}}void print(){cout<<endl;}template<typename T>
void print(const T t){cout<<t<<endl;}template<typename F,typename...R>
void print(const F f,const R...r){cout<<f<<", ";print(r...);}template<typename T>
void print(T*p, T*q){int d=p<q?1:-1;while(p!=q){cout<<*p<<", ";p+=d;}cout<<endl;}
#endif
template<typename T>bool umax(T&a, const T&b){return b<=a?false:(a=b,true);}
template<typename T>bool umin(T&a, const T&b){return b>=a?false:(a=b,true);}
template<typename T>
void V2A(T a[],const vector<T>&b){for(int i=0;i<b.size();i++)a[i]=b[i];}
template<typename T>
void A2V(vector<T>&a,const T b[]){for(int i=0;i<a.size();i++)a[i]=b[i];}
 
const double PI = acos(-1.0);
const int INF = 1e9 + 7;
 
/* -------------------------------------------------------------------------------- */
 
int a[123], b[123];
 
int main() {
#ifndef ONLINE_JUDGE
    freopen("in.txt""r", stdin);
    //freopen("out.txt", "w", stdout);
#endif // ONLINE_JUDGE
    int n;
    while (cin >> n) {
        for (int i = 0; i <= n; i ++) a[i] = 1;
        for (int i = 2; i <= n; i ++) {
            fillchar(b, 0);
            for (int j = 0; j <= n; j ++) {
                for (int k = 0; k <= n / i; k ++) {
                    if (j + k * i > n) break;
                    b[j + k * i] += a[j];
                }
            }
            memcpy(a, b, sizeof(b));
        }
        cout << a[n] << endl;
    }
    return 0;
}

[hdu1028]整数拆分,生成函数的更多相关文章

  1. HDU1028 (整数拆分)

    Ignatius and the Princess III Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K ...

  2. HDU 4651 Partition(整数拆分)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4651 题意:给出n.求其整数拆分的方案数. i64 f[N]; void init(){    f[0 ...

  3. LightOJ 1336 Sigma Function(数论 整数拆分推论)

    --->题意:给一个函数的定义,F(n)代表n的所有约数之和,并且给出了整数拆分公式以及F(n)的计算方法,对于一个给出的N让我们求1 - N之间有多少个数满足F(x)为偶数的情况,输出这个数. ...

  4. LightOJ 1341 Aladdin and the Flying Carpet(整数拆分定理)

    分析:题目并不难理解,就是一些细节上的优化需要我们注意,我在没有优化前跑了2000多MS,优化了一些细节后就是400多MS了,之前还TLE了好几次. 方法:将整数拆分为质因子以后,表达为这样的形式,e ...

  5. 整数拆分问题_C++

    一.问题背景  整数拆分,指把一个整数分解成若干个整数的和 如 3=2+1=1+1+1  共2种拆分 我们认为2+1与1+2为同一种拆分 二.定义 在整数n的拆分中,最大的拆分数为m,我们记它的方案数 ...

  6. Pollard-Rho大整数拆分模板

    随机拆分,简直机智. 关于过程可以看http://wenku.baidu.com/link?url=JPlP8watmyGVDdjgiLpcytC0lazh4Leg3s53WIx1_Pp_Y6DJTC ...

  7. poj3181【完全背包+整数拆分】

    题意: 给你一个数n,在给你一个数K,问你这个n用1-k的数去组合,有多少种组合方式. 思路: 背包重量就是n: 那么可以看出 1-k就是重物,价值是数值,重量是数值. 每个重物可以无限取,问题转化为 ...

  8. HDU 1028 Ignatius and the Princess III(母函数整数拆分)

    链接:传送门 题意:一个数n有多少种拆分方法 思路:典型母函数在整数拆分上的应用 /********************************************************** ...

  9. LeetCode 343. 整数拆分(Integer Break) 25

    343. 整数拆分 343. Integer Break 题目描述 给定一个正整数 n,将其拆分为至少两个正整数的和,并使这些整数的乘积最大化. 返回你可以获得的最大乘积. 每日一算法2019/5/2 ...

随机推荐

  1. OpenAL试水

    参考了https://wysaid.org/976.html. 这个博客给了一个EGE+OpenAL的demo和源代码.一开始没注意,博主也没有给EGE相关信息.会找不到EGE相关头文件,建议如果要二 ...

  2. 【半译】在ASP.NET Core中创建内部使用作用域服务的Quartz.NET宿主服务

    在我的上一篇文章中,我展示了如何使用ASP.NET Core创建Quartz.NET托管服务并使用它来按计划运行后台任务.不幸的是,由于Quartz.NET API的工作方式,在Quartz作业中使用 ...

  3. Linux-Deepin 下开启SSH远程登陆

    #### 关于deepin系统安装ssh后,root超级用户登录报错的完美解决方案! 最近刚刚接触到deepin,觉得,wow,除了mac,还有这么好看的非win系统,而且第测出那个Linux,宽容度 ...

  4. 关于go的init函数

    亲测,如果加载一个包,如果一个包里的每个文件,均含有init函数,那么均会执行. 目前来看,init的执行顺序,是文件名称的自然排序进行执行的. 并且只是所加载包里的go文件的init函数执行,对于包 ...

  5. sqlilab less15-17

    less15 试了很多符号,页面根本不显示别的信息,猜测为盲注 可是怎么检测闭合? 万能密码登录 最终试出来'闭合 uname=1' or 1=1 # 接下来就要工具跑 less16 同上用万能密码试 ...

  6. 微信小程序入门(持续更新)

    微信小程序的主要文件介绍: . js:脚本文件 .json:配置文件 .wxss:样式表文件 .wxml:页面 微信小程序差不多也是和mvc模式差不多的,采用数据和页面分离的模式,在js上写的数据可以 ...

  7. Nmap详细用法

    探测主机存活 (1)-sP :进行ping扫描 (2) -sn: ping探测扫描主机, 不进行端口扫描 (3)-sA     发送ACK探测存活 端口扫描 (1) -sS :半开放扫描 (2) sT ...

  8. Configure Visual Studio with UNIX end of lines

    As OP states "File > Advanced Save Options", select Unix Line Endings. https://stackove ...

  9. Windows系统自带的ODBC Data Sources的配置及使用

    一直不明白ODBC是个什么东东,虽然一次次碰到,却从没用过,看Wikipedia上的描述,可以访问各种数据库.Excel.CSV等,可以剥离数据库和操作系统依赖,简直神乎其神.不过这样的描述太抽象概括 ...

  10. tx-Lcn 分布式事务

    测试内容 SpringCloud 微服务,有两个服务,从资料服务调度到文件服务,优先在文件服务那边 save 文件后,然后拿到 fileId 存储在资料服务中.两者之间的调用使用 feign.这期间涉 ...