linear correlation coefficient|Correlation and Causation|lurking variables
4.4 Linear Correlation

若由SxxSyySxy定义则为:

所以为了计算方便:

所以,可以明白的是,Sxx和Sx是不一样的!

所以,t r is independent of the choice of units and always lies between −1 and 1
Understanding the Linear Correlation Coefficient
measures the strength of the linear relationship between two variables and that the following properties of r are meaningful only when the data points are scattered about a line.
r reflflects the slope of the scatterplot

如图,若scatterplot为正向分布(平均看来,虽然有2,4可能存在值)即positively linearly correlated(正相关),,则point必在1,3区域;则Sxy必为正,则r值为正。若scatterplot为负向分布,则point必在2,4区域;则Sxy必为负,则r值为负,即negatively linearly correlated(负相关)。
原因:


则r与b1同号,所以
The magnitude of r indicates the strength of the linear relationship

. A value of r close to −1 or to 1 indicates a strong linear relationship between the variables and that the variable x is a good linear predictor of the variable y
所以,绝对值大证明相关程度高,相关程度高则证明拟合直线的拟合成果好
以下是一些拟合直线和散点图的例子:

使用Linear Correlation Coefficient必须保证数据线性(即分布在一条直线上)
Noted:Correlation does not imply causation!
而对于密切相关的变量之间的关系的成因,可以理解为:Two variables may be strongly correlated because they are both associated with other variables, called lurking variables,For example, a study showed that teachers’ salaries and the dollar amount of liquor sales are positively linearly correlated. A possible explanation for this curious fact might be that both variables are tied to other variables, such as the rate of inflflation, that pull them along together.即有密切关联的两个变量,这两个变量若毫无联系,则可能是因为这两个变量之间的某些中间变量将其联系起来。
linear correlation coefficient|Correlation and Causation|lurking variables的更多相关文章
- [Statistics] Comparison of Three Correlation Coefficient: Pearson, Kendall, Spearman
There are three popular metrics to measure the correlation between two random variables: Pearson's c ...
- 皮尔逊相关系数与余弦相似度(Pearson Correlation Coefficient & Cosine Similarity)
之前<皮尔逊相关系数(Pearson Correlation Coefficient, Pearson's r)>一文介绍了皮尔逊相关系数.那么,皮尔逊相关系数(Pearson Corre ...
- 皮尔逊相关系数(Pearson Correlation Coefficient, Pearson's r)
Pearson's r,称为皮尔逊相关系数(Pearson correlation coefficient),用来反映两个随机变量之间的线性相关程度. 用于总体(population)时记作ρ (rh ...
- 斯皮尔曼等级相关(Spearman’s correlation coefficient for ranked data)
sklearn实战-乳腺癌细胞数据挖掘(博主亲自录制视频) https://study.163.com/course/introduction.htm?courseId=1005269003& ...
- Pearson product-moment correlation coefficient in java(java的简单相关系数算法)
一.什么是Pearson product-moment correlation coefficient(简单相关系数)? 相关表和相关图可反映两个变量之间的相互关系及其相关方向,但无法确切地表明两个变 ...
- 【ML基础】皮尔森相关系数(Pearson correlation coefficient)
前言 参考 1. 皮尔森相关系数(Pearson correlation coefficient): 完
- PCC值average pearson correlation coefficient计算方法
1.先找到task paradise 的m1-m6: 2.根据公式Dy=D1* 1/P*∑aT ,例如 D :t*k1 a:k2*k1: Dy :t*k2 Dy应该有k2个原子,维度是t: 3.依 ...
- 相关系数(CORRELATION COEFFICIENTS)会骗人?
CORRELATION COEFFICIENTS We've discussed how to summarize a single variable. The next question is ho ...
- Correlation and Regression
Correlation and Regression Sample Covariance The covariance between two random variables is a statis ...
随机推荐
- 每天一点点之laravel框架开发 - passport授权报invalid_credentials
{"error":"invalid_credentials","message":"The user credentials we ...
- 转载电子发烧友网---STM32的IO口灌入电流和输出驱动电流
刚开始学习一款单片机的时候一般都是从操作IO口开始的,所以我也一样,先是弄个流水灯. 刚开始我对STM32的认识不够,以为是跟51单片机类似,可以直接操作端口,可是LED灯却没反应,于是乎,仔细查看资 ...
- VC++ DLL 2 静态链接库
这一篇以VS2013为例子介绍怎样编写一个静态链接库和调用. 1.打开VS2013,新建Visual C++ 的win32项目: 新建后工程分支如下: 添加头文件和源文件: 编写头文件和源文件内容: ...
- Spring原理系列一:Spring Bean的生命周期
一.前言 在日常开发中,spring极大地简化了我们日常的开发工作.spring为我们管理好bean, 我们拿来就用.但是我们不应该只停留在使用层面,深究spring内部的原理,才能在使用时融汇贯通. ...
- .NET技术-4.0. NETCORE跨域
.NET技术-4.0. NETCORE跨域 1.安装程序CORS程序包,一般默认都带了此程序包的 Install-Package Microsoft.AspNetCore.Mvc.Cors 2.配置C ...
- 吴裕雄--天生自然 JAVASCRIPT开发学习:HTML DOM 集合(Collection)
<!DOCTYPE html> <html> <head> <meta charset="utf-8"> <title> ...
- 无法安装R程序包
如题,使用insatll.packages("cluster")安装包时,会出现如下错误提示. Warning: unable to access index for reposi ...
- Delphi 通过脚本 在 设计期 改 控件name 属性
program ScriptRenameZL; uses Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms, Dialog ...
- springCloud 常用组件总结
本文浅谈只是对我自己初期认识这spring cloud的一个笔记. 微服务是一种架构风格和一种应对业务的架构策略.实现这种的技术方式很多.本文主要说spring cloud. spring cloud ...
- ZJNU 1534 - Problem Robot--高级
因为是从(0,0)点开始以1,3,9,27,....的步数走的 其实可以每走一步后,以机器人为中心,平面所有坐标全部缩小3倍 那么本应该走3步的路现在只需要走1步就可以到达那个点 那么对于机器人来说这 ...