linear correlation coefficient|Correlation and Causation|lurking variables
4.4 Linear Correlation
若由SxxSyySxy定义则为:
所以为了计算方便:
所以,可以明白的是,Sxx和Sx是不一样的!
所以,t r is independent of the choice of units and always lies between −1 and 1
Understanding the Linear Correlation Coefficient
measures the strength of the linear relationship between two variables and that the following properties of r are meaningful only when the data points are scattered about a line.
r reflflects the slope of the scatterplot
如图,若scatterplot为正向分布(平均看来,虽然有2,4可能存在值)即positively linearly correlated(正相关),,则point必在1,3区域;则Sxy必为正,则r值为正。若scatterplot为负向分布,则point必在2,4区域;则Sxy必为负,则r值为负,即negatively linearly correlated(负相关)。
原因:
则r与b1同号,所以
The magnitude of r indicates the strength of the linear relationship
. A value of r close to −1 or to 1 indicates a strong linear relationship between the variables and that the variable x is a good linear predictor of the variable y
所以,绝对值大证明相关程度高,相关程度高则证明拟合直线的拟合成果好
以下是一些拟合直线和散点图的例子:
使用Linear Correlation Coefficient必须保证数据线性(即分布在一条直线上)
Noted:Correlation does not imply causation!
而对于密切相关的变量之间的关系的成因,可以理解为:Two variables may be strongly correlated because they are both associated with other variables, called lurking variables,For example, a study showed that teachers’ salaries and the dollar amount of liquor sales are positively linearly correlated. A possible explanation for this curious fact might be that both variables are tied to other variables, such as the rate of inflflation, that pull them along together.即有密切关联的两个变量,这两个变量若毫无联系,则可能是因为这两个变量之间的某些中间变量将其联系起来。
linear correlation coefficient|Correlation and Causation|lurking variables的更多相关文章
- [Statistics] Comparison of Three Correlation Coefficient: Pearson, Kendall, Spearman
There are three popular metrics to measure the correlation between two random variables: Pearson's c ...
- 皮尔逊相关系数与余弦相似度(Pearson Correlation Coefficient & Cosine Similarity)
之前<皮尔逊相关系数(Pearson Correlation Coefficient, Pearson's r)>一文介绍了皮尔逊相关系数.那么,皮尔逊相关系数(Pearson Corre ...
- 皮尔逊相关系数(Pearson Correlation Coefficient, Pearson's r)
Pearson's r,称为皮尔逊相关系数(Pearson correlation coefficient),用来反映两个随机变量之间的线性相关程度. 用于总体(population)时记作ρ (rh ...
- 斯皮尔曼等级相关(Spearman’s correlation coefficient for ranked data)
sklearn实战-乳腺癌细胞数据挖掘(博主亲自录制视频) https://study.163.com/course/introduction.htm?courseId=1005269003& ...
- Pearson product-moment correlation coefficient in java(java的简单相关系数算法)
一.什么是Pearson product-moment correlation coefficient(简单相关系数)? 相关表和相关图可反映两个变量之间的相互关系及其相关方向,但无法确切地表明两个变 ...
- 【ML基础】皮尔森相关系数(Pearson correlation coefficient)
前言 参考 1. 皮尔森相关系数(Pearson correlation coefficient): 完
- PCC值average pearson correlation coefficient计算方法
1.先找到task paradise 的m1-m6: 2.根据公式Dy=D1* 1/P*∑aT ,例如 D :t*k1 a:k2*k1: Dy :t*k2 Dy应该有k2个原子,维度是t: 3.依 ...
- 相关系数(CORRELATION COEFFICIENTS)会骗人?
CORRELATION COEFFICIENTS We've discussed how to summarize a single variable. The next question is ho ...
- Correlation and Regression
Correlation and Regression Sample Covariance The covariance between two random variables is a statis ...
随机推荐
- POJ 1164:The Castle
The Castle Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 6677 Accepted: 3767 Descri ...
- nginx log 切割
/logs/nginx/*/*access.log { daily rotate 30 missingok dateext #compress notifempty sharedscripts pos ...
- 2020牛客寒假算法基础集训营5 G街机争霸
题目描述 哎,又是银首,要是你这个签到题少WA一发就金了 牛牛战队的队员打完比赛以后又到了日常甩锅的时间.他们心情悲伤,吃完晚饭以后,大家相约到一个街机厅去solo.牛牛和牛能进入了一个迷宫,这个迷宫 ...
- 深入分析解决Deepin 15环境变量修改问题,完成JAVA环境搭建
最近使用deepin配置JAVA环境时发现不论是修改/etc/profile还是 ~/.profile多次尝试后均无效,不得其解,最后通过官方论坛看到大神对deepin环境配置的解释,以及寻找到相关解 ...
- 关于win10 使用eclipse如何配置环境变量
关于环境变量的配置,在百度上有很多教程,但对于我来说完成这步操作确实不简单,所以决定在这里分享一下配置方法. 1.安装好jdk/jre. 官网都有安装文件,仔细一些,就能安装成功,可以自定义安装路径 ...
- Java IO流操作 (I)
1.FileWriter 写数据---输出流---由控制台向文件中写数据 import java.io.FileWriter; import java.io.IOException; /* * 写数据 ...
- ES6 之 Integer数据类型
1.简介(仅仅是提案) js所有数字都保存成64为浮点数,这就决定了整数的精确程度只能到53个二进制位. 大于这个范围的整数,js是无法精确表示的,这使得js不合适进行科学和金融方面的精确计算. 故引 ...
- SQL基础教程(第2版)第4章 数据更新:4-3 数据的更新(UPDATE)
第4章 数据更新:4-3 数据的更新(UPDATE) ● 使用UPDATE语句可以更改(更新)表中的数据.● 更新部分数据行时可以使用WHERE来指定更新对象的条件.通过WHERE子句指定更新对象的U ...
- Thread--synchronized&volatile
- Python说文解字_杂谈02
1. Py中三个中啊哟的概念type.object和class的关系. type生成了int生成了1 type->class->obj type用来生成类对象的 object是最顶层的基类 ...