4.4 Linear Correlation

若由SxxSyySxy定义则为:

所以为了计算方便:

所以,可以明白的是,Sxx和Sx是不一样的!

所以,t r is independent of the choice of units and always lies between −1 and 1

Understanding the Linear Correlation Coefficient

measures the strength of the linear relationship between two variables and that the following properties of r are meaningful only when the data points are scattered about a line.

r reflflects the slope of the scatterplot

如图,若scatterplot为正向分布(平均看来,虽然有2,4可能存在值)即positively linearly correlated正相关,,则point必在1,3区域;则Sxy必为正,则r值为正。若scatterplot为负向分布,则point必在2,4区域;则Sxy必为负,则r值为负,即negatively linearly correlated(负相关)。

原因:

则r与b1同号,所以

The magnitude of r indicates the strength of the linear relationship

. A value of r close to −1 or to 1 indicates a strong linear relationship between the variables and that the variable x is a good linear predictor of the variable y

所以,绝对值大证明相关程度高,相关程度高则证明拟合直线的拟合成果好

以下是一些拟合直线和散点图的例子:

使用Linear Correlation Coefficient必须保证数据线性(即分布在一条直线上)

Noted:Correlation does not imply causation!

而对于密切相关的变量之间的关系的成因,可以理解为:Two variables may be strongly correlated because they are both associated with other variables, called lurking variables,For example, a study showed that teachers’ salaries and the dollar amount of liquor sales are positively linearly correlated. A possible explanation for this curious fact might be that both variables are tied to other variables, such as the rate of inflflation, that pull them along together.即有密切关联的两个变量,这两个变量若毫无联系,则可能是因为这两个变量之间的某些中间变量将其联系起来。

 

linear correlation coefficient|Correlation and Causation|lurking variables的更多相关文章

  1. [Statistics] Comparison of Three Correlation Coefficient: Pearson, Kendall, Spearman

    There are three popular metrics to measure the correlation between two random variables: Pearson's c ...

  2. 皮尔逊相关系数与余弦相似度(Pearson Correlation Coefficient & Cosine Similarity)

    之前<皮尔逊相关系数(Pearson Correlation Coefficient, Pearson's r)>一文介绍了皮尔逊相关系数.那么,皮尔逊相关系数(Pearson Corre ...

  3. 皮尔逊相关系数(Pearson Correlation Coefficient, Pearson's r)

    Pearson's r,称为皮尔逊相关系数(Pearson correlation coefficient),用来反映两个随机变量之间的线性相关程度. 用于总体(population)时记作ρ (rh ...

  4. 斯皮尔曼等级相关(Spearman’s correlation coefficient for ranked data)

    sklearn实战-乳腺癌细胞数据挖掘(博主亲自录制视频) https://study.163.com/course/introduction.htm?courseId=1005269003& ...

  5. Pearson product-moment correlation coefficient in java(java的简单相关系数算法)

    一.什么是Pearson product-moment correlation coefficient(简单相关系数)? 相关表和相关图可反映两个变量之间的相互关系及其相关方向,但无法确切地表明两个变 ...

  6. 【ML基础】皮尔森相关系数(Pearson correlation coefficient)

    前言 参考 1. 皮尔森相关系数(Pearson correlation coefficient): 完

  7. PCC值average pearson correlation coefficient计算方法

    1.先找到task paradise 的m1-m6: 2.根据公式Dy=D1* 1/P*∑aT ,例如 D :t*k1   a:k2*k1: Dy :t*k2 Dy应该有k2个原子,维度是t: 3.依 ...

  8. 相关系数(CORRELATION COEFFICIENTS)会骗人?

    CORRELATION COEFFICIENTS We've discussed how to summarize a single variable. The next question is ho ...

  9. Correlation and Regression

    Correlation and Regression Sample Covariance The covariance between two random variables is a statis ...

随机推荐

  1. Arduino Wireless Communication – NRF24L01 Tutorial(arduino无线通信---NRF24L01教程)

    arduino下nrf24l01库文件及相关说明 库的说明文档 https://tmrh20.github.io/RF24/ 库的源代码github下载页面 https://tmrh20.github ...

  2. dic

    参考慕课网 内置函数  map(f,list) f接收一个参数  def format_name(s): return s[0].upper() + s[1:].lower() reduce(f,li ...

  3. rsync搭建

    服务器: 查看是否安装:rpm -qa rsync 未安装则:yum install -y rsync 添加rsync用户 useradd -s /sbin/nologin -M rsync 编辑/e ...

  4. C#——发送邮件

    需要2个引用 using System.Net;using System.Net.Mail; using (MailMessage mailMessige=new MailMessage()) usi ...

  5. Dynamics CRM - 为 Form 或者字段设置 Error Notification

    在 Dynamics CRM 开发中,我们一般要利用 JS 来做一些数据验证的功能,我们也需要将验证结果显示出来,比起直接 alert 出信息来提示用户的方式,CRM 提供了更加美观和人性化的方式来通 ...

  6. 通过ES6 封装了一个上传文件的方法 XMLHttpRequest() 通用

    ### 上传进度回显,上传速度回显 ### 源码如下,新建index.js装起来 export class UploadServers { constructor (options) { this.x ...

  7. JAVA初学者——标识符命名规则及数据类型的转换

    Hello!我是浩宇大熊猫~ 直接进入正题吧~ 1)标识符的命名规则. 标识符命名法有小驼峰命名法和大驼峰命名法两种,分别应用于方法.变量和类. 小驼峰命名法应用于方法和变量,主要有两个约定: 1.标 ...

  8. not in 优化 NOT EXISTS替代

    优化前 SELECT id, loan_id, NAME FROM xw_baoxian_interchange WHERE , , ) , ) AND loan_id NOT IN ( SELECT ...

  9. 题解 洛谷P2158 【[SDOI2008]仪仗队】

    本文搬自本人洛谷博客 题目 本文进行了一定的更新 优化了 Markdown 中 Latex 语句的运用,加强了可读性 补充了"我们仍不曾知晓得 消失的 性质5 ",加强了推导的严谨 ...

  10. [原]调试实战——使用windbg调试DLL卸载时的死锁

    原调试debugwindbg死锁deadlock 前言 最近我们的程序在退出时会卡住,调查发现是在卸载dll时死锁了.大概流程是这样的:我们的dll在加载的时候会创建一个工作线程,在卸载的时候,会设置 ...