RDD通过persist方法或cache方法可以将前面的计算结果缓存,默认情况下 persist() 会把数据以序列化的形式缓存在 JVM 的堆空间中。 但是并不是这两个方法被调用时立即缓存,而是触发后面的action时,该RDD的计算结果将会被缓存在计算节点的内存中,并供后面重用。

示例如下:

def main(args: Array[String]): Unit = {
val sc: SparkContext = new SparkContext(new SparkConf().
setMaster("local[*]").setAppName("spark")) val raw: RDD[String] = sc.makeRDD(Array("hello"))
val current: RDD[String] = raw.map(_.toString + System.currentTimeMillis())
//current.persist()
current.collect().foreach(println)
current.collect().foreach(println)
current.collect().foreach(println)
}

如果不加persist方法,执行结果如下:

hello1582190762213

hello1582190762463

hello1582190762526

加了persist方法之后,执行结果变为:

hello1582190869308

hello1582190869308

hello1582190869308

可见:current这个rdd的计算结果被缓存起来了 ,下游的rdd直接从缓存拿数据并进行运算。rdd及其rdd上游的计算过程被省略了,从而加快了计算过程。

存储级别:

object StorageLevel {
val NONE = new StorageLevel(false, false, false, false)
val DISK_ONLY = new StorageLevel(true, false, false, false)
val DISK_ONLY_2 = new StorageLevel(true, false, false, false, 2)
val MEMORY_ONLY = new StorageLevel(false, true, false, true)
val MEMORY_ONLY_2 = new StorageLevel(false, true, false, true, 2)
val MEMORY_ONLY_SER = new StorageLevel(false, true, false, false)
val MEMORY_ONLY_SER_2 = new StorageLevel(false, true, false, false, 2)
val MEMORY_AND_DISK = new StorageLevel(true, true, false, true)
val MEMORY_AND_DISK_2 = new StorageLevel(true, true, false, true, 2)
val MEMORY_AND_DISK_SER = new StorageLevel(true, true, false, false)
val MEMORY_AND_DISK_SER_2 = new StorageLevel(true, true, false, false, 2)
val OFF_HEAP = new StorageLevel(true, true, true, false, 1)
class StorageLevel private(
private var _useDisk: Boolean,
private var _useMemory: Boolean,
private var _useOffHeap: Boolean,
private var _deserialized: Boolean,
private var _replication: Int = 1)

堆外内存:区别于JVM内存。这一块内存不受JVM的GC回收机制的影响,而是直接向操作系统申请并自主管理的一块内存空间。为什么需要这块内存:JVM中的内存由于受到GC的影响,如果没有用完可能迟迟得不到释放,这时候如果再加入数据,就可能导致OOM问题。而如果由自己来管理内存,可以更及时地释放内存。

默认存储级别为MEMORY_ONLY:

检查点

如图所示:

依赖链过长,会导致有大量的血统信息要被记录;

而且在进行数据恢复的时候,要重新从头开始计算,比较耗时;

因此引入了检查点:

血统信息会从检查点开始记录;

重新计算时,把检查点的数据作为元数据开始计算;

相当于是检查点之前的RDD链条被掐断,检查点作为新的RDD链条头。

示例代码如下:

def main(args: Array[String]): Unit = {
val conf: SparkConf = new SparkConf()
.setAppName("wordcount").setMaster("local[*]") val sc: SparkContext = new SparkContext(conf)
sc.setCheckpointDir("cp") val lines: RDD[String] = sc.parallelize(Array(("hello,spark"),("hello,scala"),("hello,world"))) val words: RDD[String] = lines.flatMap(_.split(" ")) val wordToOne: RDD[(String, Int)] = words.map((_,1))
//wordToOne之前的血缘关系,会被检查点替代。
//wordToOne.checkpoint() val wordToSum: RDD[(String, Int)] = wordToOne.reduceByKey(_+_) wordToSum.collect() println(wordToSum.toDebugString) }

不加checkpoint的打印结果:

(8) ShuffledRDD[3] at reduceByKey at checkPoint.scala:21 []
 +-(8) MapPartitionsRDD[2] at map at checkPoint.scala:17 []
    |  MapPartitionsRDD[1] at flatMap at checkPoint.scala:15 []
    |  ParallelCollectionRDD[0] at parallelize at checkPoint.scala:13 []

从头开始记录;

加了checkpoint之后的打印结果:

(8) ShuffledRDD[3] at reduceByKey at checkPoint.scala:21 []
 +-(8) MapPartitionsRDD[2] at map at checkPoint.scala:17 []
    |  ReliableCheckpointRDD[4] at collect at checkPoint.scala:23 []

检查点所在RDD之前的RDD的血缘信息被检查点信息所替代。

接下来考察检查点之前的RDD会不会被重复计算:

def main(args: Array[String]): Unit = {
val conf: SparkConf = new SparkConf()
.setAppName("wordcount").setMaster("local[*]") val sc: SparkContext = new SparkContext(conf)
sc.setCheckpointDir("cp") val lines: RDD[String] = sc.parallelize(Array(System.currentTimeMillis().toString)) val words: RDD[String] = lines.flatMap(_.split(" ")) val wordToOne: RDD[(String, Int)] = words.map((_,1))
//wordToOne之前的血缘关系,会被检查点替代。
wordToOne.checkpoint() val wordToSum: RDD[(String, Int)] = wordToOne.reduceByKey(_+_) wordToSum.collect().foreach(println)
wordToSum.collect().foreach(println)
wordToSum.collect().foreach(println) }

打印结果如下:

(1582193859704,1)

(1582193859704,1)

(1582193859704,1)

证明检查点之间的RDD没有被重复计算。

RDD(八)——缓存与检查点的更多相关文章

  1. Spark RDD概念学习系列之RDD的缓存(八)

      RDD的缓存 RDD的缓存和RDD的checkpoint的区别 缓存是在计算结束后,直接将计算结果通过用户定义的存储级别(存储级别定义了缓存存储的介质,现在支持内存.本地文件系统和Tachyon) ...

  2. sparkRDD:第4节 RDD的依赖关系;第5节 RDD的缓存机制;第6节 DAG的生成

    4.      RDD的依赖关系 6.1      RDD的依赖 RDD和它依赖的父RDD的关系有两种不同的类型,即窄依赖(narrow dependency)和宽依赖(wide dependency ...

  3. RDD的缓存

    RDD的缓存/持久化 缓存解决的问题 缓存解决什么问题?-解决的是热点数据频繁访问的效率问题 在Spark开发中某些RDD的计算或转换可能会比较耗费时间, 如果这些RDD后续还会频繁的被使用到,那么可 ...

  4. Redis系列(八)--缓存穿透、雪崩、更新策略

    1.缓存更新策略 1.LRU/LFU/FIFO算法剔除:例如maxmemory-policy 2.超时剔除,过期时间expire,对于一些用户可以容忍延时更新的数据,例如文章简介内容改了几个字 3.主 ...

  5. 关于redis的几件小事(八)缓存与数据库双写时的数据一致性

    1.Cache aside pattern 这是最经典的 缓存+数据库 读写模式,操作如下: ①读的时候,先读缓存,缓存没有就读数据库,然后将取出的数据放到缓存,同时返回请求响应. ②更新的时候,先删 ...

  6. HTML5入门八---缓存控件元素的值

    <!DOCTYPE html> <html> <head> <meta charset="utf-8"> <title> ...

  7. Spark RDD详解 | RDD特性、lineage、缓存、checkpoint、依赖关系

    RDD(Resilient Distributed Datasets)弹性的分布式数据集,又称Spark core,它代表一个只读的.不可变.可分区,里面的元素可分布式并行计算的数据集. RDD是一个 ...

  8. Spark核心RDD、什么是RDD、RDD的属性、创建RDD、RDD的依赖以及缓存、

    1:什么是Spark的RDD??? RDD(Resilient Distributed Dataset)叫做弹性分布式数据集,是Spark中最基本的数据抽象,它代表一个不可变.可分区.里面的元素可并行 ...

  9. RDD缓存

    RDD的缓存 Spark速度非常快的原因之一,就是在不同操作中可以在内存中持久化或缓存数据集.当持久化某个RDD后,每一个节点都将把计算的分片结果保存在内存中,并在对此RDD或衍生出的RDD进行的其他 ...

随机推荐

  1. 3DES 原理

    3DES的原理: 加密阶段:用密钥1加密->用密钥2解密->用密钥3加密 解密阶段:用密钥3解密->用密钥2加密->用密钥1解密 版权声明:本文为博主原创文章,未经博主允许不得 ...

  2. 专为前端开发者准备的15款优秀的Sublime Text插件

    Sublime Text 已成为了目前最流行的代码编辑器之一.它的反应速度.简单易用性以及丰富的插件生态,让众多前端开发者们为之倾倒. 为了帮助开发者们更便捷地使用 Sublime Text ,我们决 ...

  3. 经典线段树 UVALive 3938/UVA 1400

    题意:就是相当于动规里面的求最大连续子串,不同的是,这里需要读入一个区间x,y,输出的区间 a,b 且x<=a<=b<=y,使得a b的连续子串最长,而且询问次数达到了10的五次方. ...

  4. Java学习——代理模式

    Java中的三种代理模式 一,什么是代理模式? 代理模式是一种设计模式,简单的来说就是在不改变源码的情况下,实现对目标对象的功能扩展. 比如有个歌手对象叫Singer,这个对象有一个唱歌方法叫sing ...

  5. 关于阿里云的远程连接和轻型桌面(xfce4)安装

    这里用的阿里云服务器是轻量应用服务器 先通过网页端的远程连接进入服务器,然后 安装xfce4 (1)先安装更新:apt-get update. (2)安装xrdp:输入apt-get install ...

  6. CMake命令之export

    CMake中与export()相关的命令 (注:红色字体是标题,粉色是需要特别需要注意的地方) 总的来说,export()命令想要做的事情可以用一句话概括:Export targets from th ...

  7. SJTU T4143 推箱子

    问题描述 推箱子是一款经典的小游戏.游戏要求玩家将若干个箱子推到指定的位置,并以箱子移动次数最少作为目标. 现在,我们只需要考虑一个简化的版本--只有一个箱子.对于一张给定的地图,你需要判断是否可以将 ...

  8. Java连载71-二分查找和Arrays工具类

    一.二分法查找 1.二分法查找是建立在已经排序的基础之上的 2.程序分析是从下到大​排序. 3.这个数组中没有重复的元素​. package com.bjpowernode.java_learning ...

  9. ASP.NET ZERO 学习 导航菜单

    定义PageNames和PermissionName PageNames : Web/App_Start/Navigation/PageNames.cs public const string Das ...

  10. Python7DAY-基础语法.md

    # python简介 python交互器的作用:主要是是为了调试代码.