广义高斯分布(GGD)和非对称广义高斯分布(AGGD)
《No-Reference Image Quality Assessment in the Spatial Domain》,BRISQUE。
1. 广义高斯分布,generalized Gaussian distribution,GGD
1.1 描述
零均值的广义高斯分布如下:

其中

而 Γ(·) 是gamma函数。
形状参数 γ 控制分布的“形状”,而 σ² 控制方差。
例如另 γ = 2 就会得到零均值的高斯分布:

首先记

则

因此

就得到了一个比函数:

1.2 参数估计方法
对于零均值广义高斯分布,计算估计值:

然后就有

在知道了 ρ(γ) 的估计值之后,就很容易通过枚举的方式来估计 γ。
1.3 代码
参考BRISQUE中给出的源代码:
function [gamparam sigma] = estimateggdparam(vec)
gam = 0.2:0.001:10;
r_gam = (gamma(1./gam).*gamma(3./gam))./((gamma(2./gam)).^2); sigma_sq = mean((vec).^2);
sigma = sqrt(sigma_sq);
E = mean(abs(vec));
rho = sigma_sq/E^2;
[min_difference, array_position] = min(abs(rho - r_gam));
gamparam = gam(array_position);
2. 非对称广义高斯分布,asymmetric generalized Gaussian distribution,AGGD
2.1 描述
零均值的非对称广义高斯分布如下:

其中

形状参数 α 控制分布的“形状”,而 σl2 和 σr2 是缩放参数,它们控制模式两边的扩散程度。当 σl2 = σr2 的时候,AGGD退化成GGD。
参考论文《MULTISCALE SKEWED HEAVY TAILED MODEL FOR TEXTURE ANALYSIS》的做法:
记

则

因此

所以记

就有

类似地

然后计算比值:

其中

2.2 参数估计方法
首先估计 σl2 和 σr2 :

所以

而 r 的一个无偏估计是

所以就可以

求得

然后就和上文的GGD的方法一样,枚举求出最优的 α 就可以了。
2.3 代码
也是来自BRISQUE的matlab代码:
function [alpha leftstd rightstd] = estimateaggdparam(vec)
gam = 0.2:0.001:10;
r_gam = ((gamma(2./gam)).^2)./(gamma(1./gam).*gamma(3./gam)); leftstd = sqrt(mean((vec(vec<0)).^2));
rightstd = sqrt(mean((vec(vec>0)).^2));
gammahat = leftstd/rightstd;
rhat = (mean(abs(vec)))^2/mean((vec).^2);
rhatnorm = (rhat*(gammahat^3 +1)*(gammahat+1))/((gammahat^2 +1)^2);
[min_difference, array_position] = min((r_gam - rhatnorm).^2);
alpha = gam(array_position);
广义高斯分布(GGD)和非对称广义高斯分布(AGGD)的更多相关文章
- 广义表操作 (ava实现)——广义表深度、广义表长度、打印广义表信息
广义表是对线性表的扩展——线性表存储的所有的数据都是原子的(一个数或者不可分割的结构),且所有的数据类型相同.而广义表是允许线性表容纳自身结构的数据结构. 广义表定义: 广义表是由n个元素组成的序列: ...
- Bayesian generalized linear model (GLM) | 贝叶斯广义线性回归实例
一些问题: 1. 什么时候我的问题可以用GLM,什么时候我的问题不能用GLM? 2. GLM到底能给我们带来什么好处? 3. 如何评价GLM模型的好坏? 广义线性回归啊,虐了我快几个月了,还是没有彻底 ...
- 第三章 广义线性模型(GLM)
广义线性模型 前面我们举了回归和分类得到例子.在回归的例子中,$y \mid x;\theta \sim N(u,\sigma ^{2})$,在分类例子中,$y\mid x;\theta \sim ...
- 广义线性模型 - Andrew Ng机器学习公开课笔记1.6
在分类问题中我们如果: 他们都是广义线性模型中的一个样例,在理解广义线性模型之前须要先理解指数分布族. 指数分布族(The Exponential Family) 假设一个分布能够用例如以下公式表达, ...
- 广义线性模型(GLM)
一.广义线性模型概念 在讨论广义线性模型之前,先回顾一下基本线性模型,也就是线性回归. 在线性回归模型中的假设中,有两点需要提出: (1)假设因变量服从高斯分布:$Y={{\theta }^{T}}x ...
- 斯坦福CS229机器学习课程笔记 part3:广义线性模型 Greneralized Linear Models (GLMs)
指数分布族 The exponential family 因为广义线性模型是围绕指数分布族的.大多数常用分布都属于指数分布族,服从指数分布族的条件是概率分布可以写成如下形式:η 被称作自然参数(nat ...
- C语言产生标准正态分布或高斯分布随机数
C语言 产生标准正态分布或高斯分布 随机数 产生正态分布或高斯分布的三种方法: 1. 运用中心极限定理(大数定理) #include #include #define NSUM 25 double g ...
- SPSS数据分析—广义线性模型
我们前面介绍的一般线性模型.Logistic回归模型.对数线性模型.Poisson回归模型等,实际上均属于广义线性模型的范畴,广义 线性模型包含的范围非常广泛,原因在于其对于因变量.因变量的概率分布等 ...
- 数据结构算法C语言实现(十九)--- 5.5&5.6&5.7广义表
一.简述 传说Lisp的基本数据结构就是广义表,广义表也是具有典型递归属性的数据结构,此外,由于建表要处理字符串,用C语言处理起来也是一脸懵逼.....最后自己还想写一个将广义表还原成字符串的函数,一 ...
随机推荐
- extract()和extact_first()的区别
extract()和extact_first()都是提取Selector的data部分.但现在你要先知道什么是Selector. Selector是选择器的意思.具体定义我不知道,但通过下面的例子,你 ...
- Eclipse设置jvm参数的三种方式
方式1. 修改Elipse运行JRE默认JVM参数打开Eclipse,选择Window--Preferences...在对话框左边的树上双击Java,再双击Installed JREs,在右边选择前面 ...
- hue中访问impala报错
hue中访问impala报错:Could not connect to node03:21050 原因:impala服务未启动. 解决方法:在3个节点上都启动impala: 主节点node03启动以下 ...
- LabVIEW面向对象的ActorFramework(2)
二.为什么要学习面向编程? 面向对象编程,如果将上文推荐的两本书读完后,基本上也就有了答案.从自我产品开发的经验中,理解为可以迅速解决中大型程序需求变化时,在不影响其他程序功能的情况下,能够实现新增功 ...
- SpringBoot学习(学习过程记录)
关于微服务和SOA 这,仅是我学习过程中记录的笔记.确定了一个待研究的主题,对这个主题进行全方面的剖析.笔记是用来方便我回顾与学习的,欢迎大家与我进行交流沟通,共同成长.不止是技术. 官网教程学习ht ...
- C语言中语句的跨行支持总结
C语言中语句的跨行支持总结: 预处理一行写不下: 把一个预处理指示写成多行要用""续行,因为根据定义,一条预处理指示只能由一个逻辑代码行组成. 正常程序一行写不下: 把C代码写成多 ...
- 015.Oracle数据库,取本月月初,取本月月末
/*取本月月初,取本月月末*/ SELECT trunc( SYSDATE, 'mm' ) AS 月初 , last_day(trunc(sysdate)) AS 月末 FROM dual; 修改如下 ...
- centos7下安装maven
步骤1:在home目录下解压apache-maven-3.5.0-bin.tar.gz安装包 [root@model ~]# -bin.tar.gz 步骤2:创建/maven目录并将解压后的文件夹移至 ...
- NoSql相关
1 NoSQL, No Problem: An Intro to NoSQL Databases https://www.thoughtworks.com/insights/blog/nosql-n ...
- JAVA实现--基础算法FOR选择排序
首先 实现简单的选择排序. 简单排序的思路很简单,就是通过遍历(数组的length次)的数组,每次遍历找出最小的放到数组的第一个位置,下次遍历时就不用考虑第0位置的数从第1的位置开始找1到length ...