题解 P2261【[CQOI2007]余数求和】
P2261【[CQOI2007]余数求和】
蒟蒻终于不看题解写出了一个很水的蓝题,然而题解不能交了
虽然还看了一下自己之前的博客
题目要求:
\]
做些变化
\]
\]
按\(k<n\)分析,直接从1枚举到k肯定不行,但可以发现\(\lfloor \dfrac{k}{i} \rfloor\)的值只有\(O(\sqrt{k})\)种
- 对于前\(\sqrt{k}\)个数,结果肯定最多有\(\sqrt{k}\)种
- 对于剩下的数,\(num>\sqrt{k} \Rightarrow \lfloor \dfrac{k}{num}\rfloor<\sqrt{k}\),所以也最多只有\(\sqrt{k}\)种
所以可以按值来算,这个东西好像叫除法分块
如果当前\(\lfloor \dfrac{k}{i}\rfloor\)的值为\(num\),则下一个可以产生新的值的\(i'=\lfloor \dfrac{k}{num}\rfloor\)+1
然后直接把这\(num\)提出来,用\(num\)乘上\(i\)到\(i'-1\)的和就行是这一段\(\lfloor \dfrac{k}{i}\rfloor \times i\)的结果了乘法分配律
然后注意一下是否\(i'-1>n\),我就因为这个WA了一次。。
#include<cstdio>
#include<algorithm>
#include<iostream>
#include<cmath>
#include<iomanip>
#include<cstring>
#define reg register
#define EN std::puts("")
#define LL long long
inline int read(){
int x=0,y=1;
char c=std::getchar();
while(c<'0'||c>'9'){if(c=='-') y=0;c=std::getchar();}
while(c>='0'&&c<='9'){x=x*10+(c^48);c=std::getchar();}
return y?x:-x;
}
LL n,k;
int main(){
n=read();k=read();
reg LL ans=0,nex,num;
LL haha=n*k;
n=std::min(n,k);
for(reg int i=1;i<=n;i++){
num=k/i;
nex=k/num;//nex就是上文的i'-1
if(nex>n) nex=n;
ans+=num*((i+nex)*(nex-i+1)/2);
i=nex;
}
std::printf("%lld",haha-ans);
return 0;
}
题解 P2261【[CQOI2007]余数求和】的更多相关文章
- 洛谷 P2261 [CQOI2007]余数求和 解题报告
P2261 [CQOI2007]余数求和 题意: 求\(G(n,k)=\sum_{i=1}^n k \ mod \ i\) 数据范围: \(1 \le n,k \le 10^9\) \(G(n,k)\ ...
- 洛谷——P2261 [CQOI2007]余数求和
P2261 [CQOI2007]余数求和 关键在于化简公式,题目所求$\sum_{i=1}^{n}k\mod i$ 简化式子,也就是$\sum_{i=1}^{n}(k-\frac{k}{i}\time ...
- [Luogu P2261] [CQOI2007]余数求和 (取模计算)
题面 传送门:https://www.luogu.org/problemnew/show/P2261 Solution 这题显然有一个O(n)的直接计算法,60分到手. 接下来我们就可以拿出草稿纸推一 ...
- P2261 [CQOI2007]余数求和 【整除分块】
一.题面 P2261 [CQOI2007]余数求和 二.分析 参考文章:click here 对于整除分块,最重要的是弄清楚怎样求的分得的每个块的范围. 假设$ n = 10 ,k = 5 $ $$ ...
- [洛谷P2261] [CQOI2007]余数求和
洛谷题目链接:[CQOI2007]余数求和 题目背景 数学题,无背景 题目描述 给出正整数n和k,计算G(n, k)=k mod 1 + k mod 2 + k mod 3 + - + k mod n ...
- 洛谷P2261 [CQOI2007] 余数求和 [数论分块]
题目传送门 余数求和 题目背景 数学题,无背景 题目描述 给出正整数n和k,计算G(n, k)=k mod 1 + k mod 2 + k mod 3 + … + k mod n的值,其中k mod ...
- P2261 [CQOI2007]余数求和 (数论)
题目链接:传送门 题目: 题目背景 数学题,无背景 题目描述 给出正整数n和k,计算G(n, k)=k mod + k mod + k mod + … + k mod n的值,其中k mod i表示k ...
- 【题解】CQOI2007余数求和
大家都说这题水然而我好像还是调了有一会儿……不过暴力真的很良心,裸的暴力竟然还有60分. 打一张表出来,就会发现数据好像哪里有规律的样子,再仔细看一看,就会发现k/3~k/2为公差为2的等差数列,k/ ...
- 洛谷 P2261 [CQOI2007]余数求和
洛谷 一看就知道是一个数学题.嘿嘿- 讲讲各种分的做法吧. 30分做法:不知道,这大概是这题的难点吧! 60分做法: 一是直接暴力,看下代码吧- #include <bits/stdc++.h& ...
- 洛谷 P2261 [CQOI2007]余数求和 ||整除(数论)分块
参考:题解 令f(i)=k%i,[p]表示不大于p的最大整数f(i)=k%i=k-[k/i]*i令q=[k/i]f(i)=k-qi如果k/(i+1)=k/i=qf(i+1)=k-q(i+1)=k-qi ...
随机推荐
- go 反射包
一.什么是反射? 反射是用程序检查其所拥有的结构,尤其是类型的一种能力: 二.Printf Printf 的函数声明为: func Printf(format string, args ... int ...
- ConcurrentHashMap中节点数目并发统计的实现原理
前言: 前段时间又看了一遍ConcurrentHashMap的源码,对该并发容器的底层实现原理有了更进一步的了解,本想写一篇关于ConcurrentHashMap的put方法所涉及的初始化以及扩容操作 ...
- Java研发技术学习路线
Java研发技术成长路线 作为一名Java研发者,深感Java技术的学习是一个漫长过程,从一名Java菜鸟开始,加之持之以恒的耐心和脚踏实地的精神,不间断理论的学习,不停止技术实践,终成为一名技术佼佼 ...
- https的秘钥公钥以及之间的会话流程
一 共享秘钥 1.1 概念 共享秘钥和我们生活中同一把锁的钥匙概念类似,对同一把锁来说,加锁时使用什么钥匙,解锁也必须使用同样的钥匙. 1.2 共享秘钥在HTTP传输中的缺点 以共享密钥方式加密时 ...
- Maven版本不合适导致出现的问题如下,换个老版本就好了
2019-09-30 11:56:24,555 [ 597097] ERROR - #org.jetbrains.idea.maven - IntelliJ IDEA 2018.3.5 Build # ...
- matlab将数据读取和写入txt文档
原文链接 matlab中打开文件 fid = fopen(文件名,‘打开方式’): 说明:fid用于存储文件句柄值,如果fid>0,这说明文件打开成功. 另外,在这些字符串后添加一个“t”,如‘ ...
- 爬取腾讯网的热点新闻文章 并进行词频统计(Python爬虫+词频统计)
前言 文的文字及图片来源于网络,仅供学习.交流使用,不具有任何商业用途,版权归原作者所有,如有问题请及时联系我们以作处理. 作者:一棵程序树 PS:如有需要Python学习资料的小伙伴可以加点击下方链 ...
- E - Roaming Atcoder
题解:https://blog.csdn.net/qq_40655981/article/details/104459253 题目大意:n个房间,,每个房间都有一个人,一共k天,在一天,一个人可以到任 ...
- 基于thinkphp3.2.3开发的CMS内容管理系统 - ThinkPHP框架
基于thinkphp3.2.3开发的CMS内容管理系统 thinkphp版本:3.2.3 功能: --分类栏目管理 --文章管理 --用户管理 --友情链接管理 --系统设置 目前占时这些功能,更多功 ...
- 下载mp4文件
实现mp4文件的下载,而不是在线播放 <!DOCTYPE html> <html lang="en"> <head> <meta char ...