P2261【[CQOI2007]余数求和】

蒟蒻终于不看题解写出了一个很水的蓝题,然而题解不能交了

虽然还看了一下自己之前的博客

题目要求:

\[\sum_{i=1}^{n}{k \bmod i}
\]

做些变化

\[\sum_{i=1}^{\min(n,k)}{k-\lfloor \frac{k}{i} \rfloor}\times i
\]

\[n\times k-\sum_{i=1}^{\min(n,k)}{\lfloor \frac{k}{i}\rfloor \times i}
\]

按\(k<n\)分析,直接从1枚举到k肯定不行,但可以发现\(\lfloor \dfrac{k}{i} \rfloor\)的值只有\(O(\sqrt{k})\)种

  • 对于前\(\sqrt{k}\)个数,结果肯定最多有\(\sqrt{k}\)种
  • 对于剩下的数,\(num>\sqrt{k} \Rightarrow \lfloor \dfrac{k}{num}\rfloor<\sqrt{k}\),所以也最多只有\(\sqrt{k}\)种

所以可以按值来算,这个东西好像叫除法分块

如果当前\(\lfloor \dfrac{k}{i}\rfloor\)的值为\(num\),则下一个可以产生新的值的\(i'=\lfloor \dfrac{k}{num}\rfloor\)+1

然后直接把这\(num\)提出来,用\(num\)乘上\(i\)到\(i'-1\)的和就行是这一段\(\lfloor \dfrac{k}{i}\rfloor \times i\)的结果了乘法分配律

然后注意一下是否\(i'-1>n\),我就因为这个WA了一次。。

#include<cstdio>
#include<algorithm>
#include<iostream>
#include<cmath>
#include<iomanip>
#include<cstring>
#define reg register
#define EN std::puts("")
#define LL long long
inline int read(){
int x=0,y=1;
char c=std::getchar();
while(c<'0'||c>'9'){if(c=='-') y=0;c=std::getchar();}
while(c>='0'&&c<='9'){x=x*10+(c^48);c=std::getchar();}
return y?x:-x;
}
LL n,k;
int main(){
n=read();k=read();
reg LL ans=0,nex,num;
LL haha=n*k;
n=std::min(n,k);
for(reg int i=1;i<=n;i++){
num=k/i;
nex=k/num;//nex就是上文的i'-1
if(nex>n) nex=n;
ans+=num*((i+nex)*(nex-i+1)/2);
i=nex;
}
std::printf("%lld",haha-ans);
return 0;
}

题解 P2261【[CQOI2007]余数求和】的更多相关文章

  1. 洛谷 P2261 [CQOI2007]余数求和 解题报告

    P2261 [CQOI2007]余数求和 题意: 求\(G(n,k)=\sum_{i=1}^n k \ mod \ i\) 数据范围: \(1 \le n,k \le 10^9\) \(G(n,k)\ ...

  2. 洛谷——P2261 [CQOI2007]余数求和

    P2261 [CQOI2007]余数求和 关键在于化简公式,题目所求$\sum_{i=1}^{n}k\mod i$ 简化式子,也就是$\sum_{i=1}^{n}(k-\frac{k}{i}\time ...

  3. [Luogu P2261] [CQOI2007]余数求和 (取模计算)

    题面 传送门:https://www.luogu.org/problemnew/show/P2261 Solution 这题显然有一个O(n)的直接计算法,60分到手. 接下来我们就可以拿出草稿纸推一 ...

  4. P2261 [CQOI2007]余数求和 【整除分块】

    一.题面 P2261 [CQOI2007]余数求和 二.分析 参考文章:click here 对于整除分块,最重要的是弄清楚怎样求的分得的每个块的范围. 假设$ n = 10 ,k = 5 $ $$  ...

  5. [洛谷P2261] [CQOI2007]余数求和

    洛谷题目链接:[CQOI2007]余数求和 题目背景 数学题,无背景 题目描述 给出正整数n和k,计算G(n, k)=k mod 1 + k mod 2 + k mod 3 + - + k mod n ...

  6. 洛谷P2261 [CQOI2007] 余数求和 [数论分块]

    题目传送门 余数求和 题目背景 数学题,无背景 题目描述 给出正整数n和k,计算G(n, k)=k mod 1 + k mod 2 + k mod 3 + … + k mod n的值,其中k mod ...

  7. P2261 [CQOI2007]余数求和 (数论)

    题目链接:传送门 题目: 题目背景 数学题,无背景 题目描述 给出正整数n和k,计算G(n, k)=k mod + k mod + k mod + … + k mod n的值,其中k mod i表示k ...

  8. 【题解】CQOI2007余数求和

    大家都说这题水然而我好像还是调了有一会儿……不过暴力真的很良心,裸的暴力竟然还有60分. 打一张表出来,就会发现数据好像哪里有规律的样子,再仔细看一看,就会发现k/3~k/2为公差为2的等差数列,k/ ...

  9. 洛谷 P2261 [CQOI2007]余数求和

    洛谷 一看就知道是一个数学题.嘿嘿- 讲讲各种分的做法吧. 30分做法:不知道,这大概是这题的难点吧! 60分做法: 一是直接暴力,看下代码吧- #include <bits/stdc++.h& ...

  10. 洛谷 P2261 [CQOI2007]余数求和 ||整除(数论)分块

    参考:题解 令f(i)=k%i,[p]表示不大于p的最大整数f(i)=k%i=k-[k/i]*i令q=[k/i]f(i)=k-qi如果k/(i+1)=k/i=qf(i+1)=k-q(i+1)=k-qi ...

随机推荐

  1. Win安装docker

    Windows Docker 安装 win7.win8 系统 win7.win8 等需要利用 docker toolbox 来安装,国内可以使用阿里云的镜像来下载,下载地址:http://mirror ...

  2. tf.nn.max_pool 池化

    tf.nn.max_pool( value, ksize, strides, padding, data_format='NHWC', name=None ) 参数: value:由data_form ...

  3. 数据结构和算法(Golang实现)(3)简单入门Golang-流程控制语句

    流程控制语句 计算机编程语言中,流程控制语句很重要,可以让机器知道什么时候做什么事,做几次.主要有条件和循环语句. Golang只有一种循环:for,只有一种判断:if,还有一种特殊的switch条件 ...

  4. [总结]Floyd算法及其应用

    目录 一.Floyd算法 二.Floyd算法的应用 1. 传递闭包 例1:P2881 [USACO07MAR]排名的牛Ranking the Cows 例2:P2419 [USACO08JAN]牛大赛 ...

  5. 技术债务(Technical debt)的产生原因及衡量解决

    第一次发布代码,就好比借了一笔钱.只要通过不断重写来偿还债务,小额负债可以加速开发.但久未偿还债务会引发危险.复用马马虎虎的代码,类似于负债的利息.整个部门有可能因为松散的实现,不完全的面向对象的设计 ...

  6. C#——继承

    在某基类中声明 virtual 并在一个或多个派生类中被重新定义的成员函数称为虚函数. 虚函数的作用就是实现多态性(Polymorphism),多态性是将接口与实现进行分离. C#作为完全面向对象语言 ...

  7. 从Generator入手读懂co模块源码

    这篇文章是讲JS异步原理和实现方式的第四篇文章,前面三篇是: setTimeout和setImmediate到底谁先执行,本文让你彻底理解Event Loop 从发布订阅模式入手读懂Node.js的E ...

  8. 2019CCPC-江西省赛(重现赛)- 感谢南昌大学

    A题: 题意: 给你两棵树,然后用一条边将这两棵树连接起来,然后计算 每两点之间的距离,然后求和,问这个和的最小值. 思路:根据重心的性质,树上的所有点到重心的距离最短,因此我们找到两棵树的重心,然后 ...

  9. springboot集成JdbcTemplate+druid

    application.yml datasource: username: root password: root url: jdbc:mysql://localhost:3306/early_war ...

  10. windows下常用快捷指令记忆

    快速打开环境变量窗口 sysdm.cpl --系统设置 快速打开远程桌面程序 mstsc ---Microsoft terminal services client 快速打开事件查看器 eventvw ...