上面的三个进程都是延迟相同的时间,让我们修改一下,尝试让它们延迟不同的时间。

void TestA()
{
int i = 0;
while (1) {
disp_str("A.");
milli_delay(300);
}
} void TestB()
{
int i = 0x1000;
while(1){
disp_str("B.");
milli_delay(900);
}
} void TestC()
{
int i = 0x2000;
while(1){
disp_str("C.");
milli_delay(1500);
}
}

运行后,数一数可以知道,输出中共有A字母140个,B字母51个,C字母32个,所以A和B的个数之比是2.745,A和C的个数之比是4.345,这两个数字与3(进程B和A的延迟时间之比)和5(进程C和A的延迟时间之比)是基本吻合的。

为进程表添加新的成员,proc.h:

typedef struct s_proc {
STACK_FRAME regs; /* process registers saved in stack frame */ u16 ldt_sel; /* gdt selector giving ldt base and limit */
DESCRIPTOR ldts[LDT_SIZE]; /* local descriptors for code and data */ int ticks; /* remained ticks */
int priority; u32 pid; /* process id passed in from MM */
char p_name[16]; /* name of the process */
}PROCESS;

在进程表中添加了两个成员:ticks是递减的,从某个初值到0.为了记住ticks的初值,我们另外定义一个变量priority,它是恒定不变的。当所有的进程ticks都变为0之后,再把各自的ticks赋值为priority,然后继续执行。

ticks和priority最初赋值如下,main.c的kernel_main():

	proc_table[0].ticks = proc_table[0].priority = 150;
proc_table[1].ticks = proc_table[1].priority = 50;
proc_table[2].ticks = proc_table[2].priority = 30;

对于进程调度,我们可以单独写一个函数,叫做schedule(),放在proc.c中:

PUBLIC void schedule()
{
PROCESS* p;
int greatest_ticks = 0; while (!greatest_ticks) {
for (p = proc_table; p < proc_table+NR_TASKS; p++) {
if (p->ticks > greatest_ticks) {
greatest_ticks = p->ticks;
p_proc_ready = p;
}
} if (!greatest_ticks) {
for (p = proc_table; p < proc_table+NR_TASKS; p++) {
p->ticks = p->priority;
}
}
}
}

同时修改时钟中断处理函数,clock.c:

PUBLIC void clock_handler(int irq)
{
ticks++;
p_proc_ready->ticks--; if (k_reenter != 0) {
return;
} schedule();
}

同时我们将所有进程的延迟时间全改为相同的值,把所有milli_delay的参数改成200.

make运行的结果发现,虽然各个进程延迟的时间都相同,但由于改变了它们的优先级,运行的时间明显不同,这说明我们的优先级策略生效了!

但是,当前的A、B、C三个字母的个数之比是139:71:54,大体相当于2.57:1.31:1,与进程优先级5:1.67:1(15:5:3)相差比较大。为什么呢,首先修改各个进程,让它们各自打印一个当前的ticks。然后修改一下schedule(),加上几条打印语句等等后再次运行,

修改clock_handler,clock.c:

PUBLIC void clock_handler(int irq)
{
ticks++;
p_proc_ready->ticks--; if (k_reenter != 0) {
return;
} if (p_proc_ready->ticks > 0) {
return;
} schedule(); }

这样,在一个进程的ticks还没有变成0之前,其他进程就不会有机会获得执行。

从运行结果可以明显看出,进程A先执行,然后是B,再然后是C,与原先有了很大的差别。原因在于进程A的ticks从150递减至0之后,才把控制权给B,B用完它的ticks(50)之后再给C,然后各自的ticks被重置,继续下一个类似的过程。可以看到,进程A在150ticks内执行8次循环,B在50ticks内执行3次循环,C在30ticks内执行2次循环。这样就很直观了。

我们再把它们的优先级改小一点:

	proc_table[0].ticks = proc_table[0].priority = 15;
proc_table[1].ticks = proc_table[1].priority = 5;
proc_table[2].ticks = proc_table[2].priority = 3;

然后把各个进程的延迟时间改成10ms:

void TestA()
{
int i = 0;
while (1) {
disp_str("A.");
milli_delay(10);
}
}

运行结果如下,可以看出,现在打印出的字符的个数之比非常接近15:5:3:

源码

操作系统开发系列—13.i.进程调度 ●的更多相关文章

  1. 操作系统开发系列—13.g.操作系统的系统调用 ●

    在我们的操作系统中,已经存在的3个进程是运行在ring1上的,它们已经不能任意地使用某些指令,不能访问某些权限更高的内存区域,但如果一项任务需要这些使用指令或者内存区域时,只能通过系统调用来实现,它是 ...

  2. 操作系统开发系列—13.a.进程 ●

    进程的切换及调度等内容是和保护模式的相关技术紧密相连的,这些代码量可能并不多,但却至关重要. 我们需要一个数据结构记录一个进程的状态,在进程要被挂起的时候,进程信息就被写入这个数据结构,等到进程重新启 ...

  3. 操作系统开发系列—13.h.延时操作

    计数器的工作原理是这样的:它有一个输入频率,在PC上是1193180HZ.在每一个时钟周期(CLK cycle),计数器值会减1,当减到0时,就会触发一个输出.由于计数器是16位的,所以最大值是655 ...

  4. 操作系统开发系列—13.e.三进程

    我们再来添加一个任务,首先添加一个进程体: void TestC() { int i = 0x2000; while(1){ disp_str("C"); disp_int(i++ ...

  5. 操作系统开发系列—13.d.多进程 ●

    进程此时不仅是在运行而已,它可以随时被中断,可以在中断处理程序完成之后被恢复.进程此时已经有了两种状态:运行和睡眠.我们已经具备了处理多个进程的能力,只需要让其中一个进程处在运行态,其余进程处在睡眠态 ...

  6. 操作系统开发系列—13.c.进程之中断重入

    现在又出现了另外一个的问题,在中断处理过程中是否应该允许下一个中断发生? 让我们修改一下代码,以便让系统可以在时钟中断的处理过程中接受下一个时钟中断.这听起来不是个很好的主意,但是可以借此来做个试验. ...

  7. 操作系统开发系列—13.b.进程之丰富中断处理程序

    首先打开时钟中断: out_byte(INT_M_CTLMASK, 0xFE); // Master 8259, OCW1. out_byte(INT_S_CTLMASK, 0xFF); // Sla ...

  8. 微信公众号开发系列-13、基于RDIFramework.NET框架整合微信开发应用效果展示

    1.前言 通过前面一系列文章的学习,我们对微信公众号开发已经有了一个比较深入和全面的了解. 微信公众号开发为企业解决那些问题呢? 我们经常看到微信公众号定制开发.微信公众平台定制开发,都不知道这些能给 ...

  9. 操作系统开发系列—1.HelloWorld ●

    org 07c00h ;伪指令,告诉编译器程序会被加载到7c00处 mov ax, cs mov ds, ax mov es, ax call DispStr ;调用显示字符串例程 jmp $ ;无限 ...

随机推荐

  1. Azure ARM (6) ARM Template简单介绍

    <Windows Azure Platform 系列文章目录>      Azure ARM (1) 概览      Azure ARM (2) 概览      Azure ARM (3) ...

  2. 笔记:Html.Partial和Html.Action

    1.带有Render的方法返回值是void,在方法内部进行输出:不带的返回值类型为MvcHtmlString,所以只能这样使用:@Html.Partial 对应 @{Html.RenderPartia ...

  3. 自定义视图引擎,实现MVC主题快速切换

    一个网站的主题包括布局,色调,内容展示等,每种主题在某些方面应该或多或少不一样的,否则就不能称之为不同的主题了.每一个网站至少都有一个主题,我这里称之为默认主题,也就是我们平常开发设计网站时的一个固定 ...

  4. MVC导出数据到EXCEL新方法:将视图或分部视图转换为HTML后再直接返回FileResult

    导出EXCEL方法总结 MVC导出数据到EXCEL的方法有很多种,常见的是: 1.采用EXCEL COM组件来动态生成XLS文件并保存到服务器上,然后转到该文件存放路径即可: 优点:可设置丰富的EXC ...

  5. AndroidStudio 多层级 Module 对 aar 引用问题

    最近碰到这么个恶心的问题 问题:有个arr文件被放到Module A中引用,现在Module B又依赖了Module A,则在编译过程中会发生错误,Module B找不到aar文件.(同时如果又有Mo ...

  6. Hibernate —— Hibernate 配置文件

    1.Hibernate 配置文件主要用于配置**数据库连接**和 Hibernate 运行时所需的**各种属性**. 2.每一个 Hibernate 配置文件对应一个 Configuration 对象 ...

  7. 浅谈Dictionary用法

    一.基础篇 1.Dictionary泛型类提供了从一组键到一组值的映射,即键和值的集合类. 2.Dictionary通过键来检索值的速度是非常快的,这是因为 Dictionary 类是作为一个哈希表来 ...

  8. qrcodenet 代码中一些基础的认识 帮助

    1): gRender.WriteToStream(matrix, ImageFormat.Png, stream, new Point(600, 600)); new Point(600, 600) ...

  9. iis 不能访问json文件

    我从网上查的资料,解决方案都是设置MIME 映射和“处理脚本映射”. 我按照网上的解决方案执行之后还没有解决我的这个问题,所以我想会不会是其他的原因. 在那么一瞬间,灵光一闪,我把json文件放到新建 ...

  10. 【C#】添加引用方式抛出和捕获干净的WebService异常

    说明:[干净]指的是客户端在捕获WebService(下称WS)抛出的异常时,得到的ex.Message就是WS方法中抛出的异常消息,不含任何“杂质”. 前提:你对WS有编写权.就是说如果你调的是别人 ...