思考题的说明

一、本学期高代I的思考题面向16级的同学,将不定期地进行更新;

二、欢迎16级的同学通过微信或书面方式提供解答图片或纸质文件给我,优秀的解答可以分享给大家;

三、请大家先独立解答思考题,实在做不出来的情况下,可以点击思考题的解答进行参考。

***********************************************************

1、试求下列 $n+1$ 阶行列式的值:

$$|A|=\begin{vmatrix} x-n & n & & & \\ -1 & x-n+2 & n-1 & & \\ & -2 & \ddots & \ddots & \\ & & \ddots & \ddots & 1 \\ & & & -n & x+n \\ \end{vmatrix}.$$

2、设 $A,B$ 为 $n$ 阶方阵, 满足 $AB-BA=A^m\,(m\geq 1)$, 证明: $A$ 为奇异阵 (注意不能用高代 II 的方法).

3、设 $\lambda_1,\lambda_2,\cdots,\lambda_n$ 为 $n$ 个不同的数.

(i) 试求下列 Vander Monde 矩阵 $A$ 的逆阵:

$$A=\begin{pmatrix} 1 & \lambda_1 & \lambda_1^2 & \cdots & \lambda_1^{n-1} \\ 1 & \lambda_2 & \lambda_2^2 & \cdots & \lambda_2^{n-1} \\ \vdots & \vdots & \vdots & & \vdots \\ 1 & \lambda_n & \lambda_n^2 & \cdots & \lambda_n^{n-1} \end{pmatrix};$$

(ii) 设 $f(x)$ 为次数小于 $n$ 的多项式, 满足 $f(\lambda_i)=b_i\,(1\leq i\leq n)$, 利用 (i) 的结论证明: $f(x)$ 必为如下形式的多项式 (称为 Lagrange 插值公式):

$$f(x)=\sum_{i=1}^nb_i\dfrac{(x-\lambda_1)\cdots(x-\lambda_{i-1})(x-\lambda_{i+1})\cdots(x-\lambda_n)}{(\lambda_i-\lambda_1)\cdots(\lambda_i-\lambda_{i-1})(\lambda_i-\lambda_{i+1})\cdots(\lambda_i-\lambda_n)}.$$

4、设下列矩阵 $M$ 是可逆阵, 试求其逆阵 $M^{-1}$:

$$M=\begin{pmatrix} a_1^2 & a_1a_2+1 & \cdots & a_1a_n+1\\ a_2a_1+1 & a_2^2 & \cdots & a_2a_n+1 \\ \vdots & \vdots & & \vdots \\ a_na_1+1 & a_na_2+1 & \cdots & a_n^2 \end{pmatrix}.$$

5、每一行、每一列只有一个元素为 1, 其余元素为 0 的方阵称为置换矩阵, $n$ 阶置换矩阵全体记为 $P_n$. 证明: 若 $A,B\in P_n$, 则 $AB\in P_n$; $A^{-1}=A'\in P_n$.

6、下列矩阵称为 Toeplitz 矩阵或位移矩阵 (一列数 $a_{-(n-1)},\cdots,a_{-2},a_{-1},a_0,a_1,a_2,\cdots,a_{n-1}$ 依次向右平移一位):

$$A=\begin{pmatrix} a_0 & a_1 & a_2 & \cdots & a_{n-1}\\ a_{-1} & a_0 & a_1 & \cdots & a_{n-2} \\ a_{-2} & a_{-1} & a_0 & \cdots & a_{n-3} \\ \vdots & \vdots & \vdots & & \vdots \\ a_{-(n-2)} & a_{-(n-3)} & a_{-(n-4)} & \cdots & a_1 \\ a_{-(n-1)} & a_{-(n-2)} & a_{-(n-3)} & \cdots & a_0 \\ \end{pmatrix}.$$

(i) 设 $N=\begin{pmatrix} 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & & \vdots \\ 0 & 0 & 0 & \cdots & 1 \\ 0 & 0 & 0 & \cdots & 0 \\ \end{pmatrix}$, $M=N'$, 证明: $A=a_{-(n-1)}M^{n-1}+\cdots+a_{-2}M^2+a_{-1}M+a_0I_n+a_1N+a_2N^2+\cdots+a_{n-1}N^{n-1}$;

(ii) $n$ 阶上三角 (下三角)  Toeplitz 矩阵全体记为 $T_U$ ($T_L$), 证明: 若 $A,B\in T_U\,(T_L)$, 则 $AB\in T_U\,(T_L)$; 若 $A\in T_U\,(T_L)$ 为非异阵, 则 $A^{-1}\in T_U\,(T_L)$;

(iii) 举例说明: 存在 $n$ 阶 Toeplitz 矩阵 $A,B$, 使得 $AB$ 不是 Toeplitz 矩阵; 存在 $n$ 阶非异 Toeplitz 矩阵 $A$, 使得 $A^{-1}$ 不是 Toeplitz 矩阵.

[总结: 高等代数中常见的矩阵]  对角阵, 分块对角阵; 上 (下) 三角阵, 分块上 (下) 三角阵; 标准单位行、列向量, 基础矩阵 (白皮书第 55 页及其相关应用); 初等矩阵, 分块初等矩阵; 置换矩阵 (思考题 5); Toeplitz 矩阵 (思考题 6); 循环矩阵 (白皮书例 2.1, 例 2.12, 例 2.52, 例 6.32 和 15 级高代 I 思考题 12); Vander Monde 矩阵 (思考题 3 及其相关应用); 多项式的友阵 (白皮书例 6.14); 三对角矩阵 (白皮书例 1.23 和例 9.65) 等.

7、设 $A,B$ 为 $n$ 阶实方阵, 满足 $A^2+B^2=0$, 设 $d=|AB-BA|$. 证明: 若 $n$ 是奇数, 则 $d=0$; 若 $n$ 能被 $4$ 整除, 则 $d\geq 0$; 若 $n$ 除 $4$ 余 $2$, 则 $d\leq 0$.

8、设 $J$ 为元素全为 $1$ 的 $n$ 阶方阵, $X$ 为 $n$ 阶未知矩阵, 满足 $X=JX+XJ$, 证明: $X=0$ (注意不能用高代 II 的方法).

9、设 $A,B$ 为 $n$ 阶方阵, 满足: $A^2=2A$, $B^2=2B$, $2I_n-A-B$ 为非异阵, 证明: $r(A)=r(B)$.

10、设 $A,B$ 为 $n$ 阶方阵, 满足 $AB=0$, 证明: 若 $n$ 是奇数, 则 $AB'+A'B$ 必为奇异阵; 若 $n$ 为偶数, 举例说明上述结论一般不成立.

11、设 $A,B$ 为 $m\times n$ 和 $m\times p$ 矩阵, $X$ 为 $n\times p$ 未知矩阵, 证明: 矩阵方程 $AX=B$ 有解的充分必要条件是 $r(A\,|\,B)=r(A)$.

12、设 $P_1,P_2,\cdots,P_k$, $Q_1,Q_2,\cdots,Q_k$ 是 $n$ 阶方阵, 满足 $\forall\,1\leq i,j\leq k$, $P_iQ_j=Q_jP_i$, $r(P_i)=r(P_iQ_i)$ 成立. 证明: $r(P_1P_2\cdots P_k)=r(P_1P_2\cdots P_kQ_1Q_2\cdots Q_k)$.

13、设 $A,B$ 为 $m\times n$ 和 $n\times p$ 矩阵, 证明: 存在 $p\times n$ 矩阵 $C$, 使得 $ABC=A$ 的充要条件是 $r(A)=r(AB)$.

14、设 $\varphi$ 是 $n$ 维线性空间 $V$ 上的线性变换, 证明: 若 $V$ 的任一 $n-1$ 维子空间都是 $\varphi$-不变子空间, 则 $\varphi$ 必为纯量变换.

15、设 $V$ 是数域 $\mathbb{K}$ 上的 $n$ 维线性空间, $\varphi$ 是 $V$ 上的线性变换.

(i) 设 $v\in V$, $g(x)\in\mathbb{K}[x]$, 使得 $g(\varphi)(v)=0$, 则称 $g(x)$ 为 $v$ 的零化多项式. 证明: 在 $v$ 的全体非零零化多项式构成的集合中, 存在唯一的次数最小的首一零化多项式, 称为 $v$ 的极小多项式, 记为 $m_v(x)$;

(ii) 设 $v\in V$, 称由 $\{v,\varphi(v),\varphi^2(v),\cdots\}$ 张成的子空间 $C(\varphi,v)$ 为 $v$ 关于 $\varphi$ 的循环子空间. 设 $v$ 的极小多项式为 $m_v(x)=x^k+a_{k-1}x^{k-1}+\cdots+a_1x+a_0$, 证明: $\{v,\varphi(v),\cdots,\varphi^{k-1}(v)\}$ 构成了 $C(\varphi,v)$ 的一组基, 特别地, $\dim C(\varphi,v)=\deg m_v(x)$;

(iii) 设 $v$ 的极小多项式 $m_v(x)=m_1(x)m_2(x)\cdots m_r(x)$, 其中 $m_i(x)$ 是两两互素的首一多项式. 证明: 存在 $v_i\in C(\varphi,v)$, 使得 $v_i$ 的极小多项式为 $m_i(x)$, 并且 $$C(\varphi,v)=C(\varphi,v_1)\oplus C(\varphi,v_2)\oplus\cdots\oplus C(\varphi,v_r);$$

(iv) 设 $v_1,v_2,\cdots,v_r\in V$ 的极小多项式分别为 $m_1(x),m_2(x),\cdots,m_r(x)$, 它们是两两互素的多项式. 证明: 存在 $v\in V$, 使得 $v$ 的极小多项式 $m_v(x)=m_1(x)m_2(x)\cdots m_r(x)$, 并且 $$C(\varphi,v)=C(\varphi,v_1)\oplus C(\varphi,v_2)\oplus\cdots\oplus C(\varphi,v_r).$$

16、设 $A$ 是有理数域 $\mathbb{Q}$ 上的 $n$ 阶方阵, 满足 $A^{p-1}+\cdots+A+I_n=0$, 其中 $p$ 为素数, $0<k<p$ 为给定的整数. 证明: 对任意的复数 $\lambda_0$, $\lambda_0I_n-A$ 为非异阵当且仅当 $\lambda_0^kI_n-A$ 为非异阵.

复旦高等代数 I(16级)思考题的更多相关文章

  1. 复旦高等代数 I(16级)每周一题

    每周一题的说明 一.本学期高代I的每周一题面向16级的同学,将定期更新(一般每周的周末公布下一周的题目); 二.欢迎16级的同学通过微信或书面方式提供解答图片或纸质文件给我,优秀的解答可以分享给大家: ...

  2. 复旦高等代数II(16级)每周一题

    每周一题的说明 一.本学期高代II的每周一题面向16级的同学,将定期更新(一般每周的周末公布下一周的题目); 二.欢迎16级的同学通过微信或书面方式提供解答图片或纸质文件给我,优秀的解答可以分享给大家 ...

  3. 复旦高等代数 II(17级)每周一题

    本学期将继续进行高等代数每周一题的活动.计划从第一教学周开始,到第十六教学周为止(根据法定节假日安排,中间个别周会适当地停止),每周的周末将公布1道思考题(共16道),供大家思考和解答.每周一题通过“ ...

  4. 16 级高代 II 思考题十的多种证明

    16 级高代 II 思考题十  设 $V$ 是数域 $\mathbb{K}$ 上的 $n$ 维线性空间, $\varphi$ 是 $V$ 上的线性变换, 证明: $\varphi$ 的极小多项式 $m ...

  5. [问题2014S12] 复旦高等代数II(13级)每周一题(第十二教学周)

    [问题2014S12]  设 \(A,B\) 都是 \(n\) 阶半正定实对称阵, 证明: \(AB\) 的所有特征值都是非负实数. 进一步, 若 \(A,B\) 都是正定实对称阵, 证明: \(AB ...

  6. 16 级高代 II 思考题九的七种解法

    16 级高代 II 思考题九  设 $V$ 是数域 $\mathbb{K}$ 上的 $n$ 维线性空间, $\varphi$ 是 $V$ 上的线性变换, $f(\lambda),m(\lambda)$ ...

  7. 复旦大学2016--2017学年第二学期(16级)高等代数II期末考试第六大题解答

    六.(本题10分)  设 $A$ 为 $n$ 阶半正定实对称阵, $S$ 为 $n$ 阶实反对称阵, 满足 $AS+SA=0$. 证明: $|A+S|>0$ 的充要条件是 $r(A)+r(S)= ...

  8. 广州商学院16级软工一班&二班-第一次作业成绩

    广州商学院16级软工一班&二班-第一次作业成绩 作业地址 16软工一班 16软工二班 总结 本次作业反映了几个比较严重的问题: 不按要求阅读相应的文章,回答问题只是敷衍几句. 部分同学的版式混 ...

  9. 复旦高等代数 II(15级)思考题

    1.设 $f(x)=x^n+a_{n-1}x^{n-1}+\cdots+a_1x+a_0$ 是整系数首一多项式, 满足: $|a_0|$ 是素数且 $$|a_0|>1+\sum_{i=1}^{n ...

随机推荐

  1. linux下解压

    (1).*.tar 用 tar –xvf 解压  (2).*.gz 用 gzip -d或者gunzip 解压  (3).*.tar.gz和*.tgz 用 tar –xzf 解压  (4).*.bz2 ...

  2. form 提交数组的一些trick

    在给服务器传值时form利用 $.post( "/member/member/book/" + event_id, { tickets: tickets, csrf_ppw_tok ...

  3. Xcode使用HTTP配置

    Xcode7 出现获取网络请求时出现如下异常: App Transport Security has blocked a cleartext HTTP (http://) resource load ...

  4. zabbix 自定义探索规则发现服务器上面的kvm虚拟机和对应的网卡

    安装完zabbix服务器之后 只有两个探索规则模版,挂载点探索和网卡探索 场景描述:想使用zabbix监控kvm虚拟机的网卡的流量情况, 获取虚拟机和网卡对应关系 虚拟机 S-1 virsh domi ...

  5. JAVASE02-Unit04: 集合框架 、 集合操作 —— 线性表

    Unit04: 集合框架 . 集合操作 -- 线性表 操作集合元素相关方法 package day04; import java.util.ArrayList; import java.util.Co ...

  6. hadoop_elk架构图

  7. SQL SELECT INTO使用

    SQL SELECT INTO 语句可用于创建表的备份复件. SELECT INTO 语句 SELECT INTO 语句从一个表中选取数据,然后把数据插入另一个表中. SELECT INTO 语句常用 ...

  8. lua table integer index 特性

    table.maxn (table) Returns the largest positive numerical index of the given table, or zero if the t ...

  9. sql 中set和select区别

    基于SQL中SET与SELECT赋值的区别详解 2012年09月06日 ⁄ 综合 ⁄ 共 912字 ⁄ 字号 小 中 大 ⁄ 评论关闭 最近的项目写的SQL比较多,经常会用到对变量赋值,而我使用SET ...

  10. Hihocoder 1063 缩地

    树形dp 涉及不重复背包组合求最小 从边长分段看不好入手 因为点数只有100点值<=2,总值<=200 可以对每个点的每个值进行dp 这里最后不回来肯定优于全回来 然后由于要分为回来和不回 ...