[TOC]

Spark简介

整体认识

Apache Spark是一个围绕速度、易用性和复杂分析构建的大数据处理框架。最初在2009年由加州大学伯克利分校的AMPLab开发,并于2010年成为Apache的开源项目之一。
Spark在整个大数据系统中处于中间偏上层的地位,如下图,对hadoop起到了补充作用:

基本概念

Fork/Join框架是Java7提供了的一个用于并行执行任务的框架, 是一个把大任务分割成若干个小任务,最终汇总每个小任务结果后得到大任务结果的框架。

  • 第一步分割任务。首先我们需要有一个fork类来把大任务分割成子任务,有可能子任务还是很大,所以还需要不停的分割,直到分割出的子任务足够小。
  • 第二步执行任务并合并结果。分割的子任务分别放在双端队列里,然后几个启动线程分别从双端队列里获取任务执行。子任务执行完的结果都统一放在一个队列里,启动一个线程从队列里拿数据,然后合并这些数据。
    具体可参考Fork/Join

    核心概念

  • RDD(Resilient Distributed Dataset) 弹性分布数据集介绍
    弹性分布式数据集(基于Matei的研究论文)或RDD是Spark框架中的核心概念。可以将RDD视作数据库中的一张表。其中可以保存任何类型的数据。Spark将数据存储在不同分区上的RDD之中。
    RDD可以帮助重新安排计算并优化数据处理过程。
    此外,它还具有容错性,因为RDD知道如何重新创建和重新计算数据集。
    RDD是不可变的。你可以用变换(Transformation)修改RDD,但是这个变换所返回的是一个全新的RDD,而原有的RDD仍然保持不变。
    RDD支持两种类型的操作:

    • 变换(Transformation)
    • 行动(Action)
      变换:变换的返回值是一个新的RDD集合,而不是单个值。调用一个变换方法,不会有任何求值计算,它只获取一个RDD作为参数,然后返回一个新的RDD。变换函数包括:map,filter,flatMap,groupByKey,reduceByKey,aggregateByKey,pipe和coalesce。
      行动:行动操作计算并返回一个新的值。当在一个RDD对象上调用行动函数时,会在这一时刻计算全部的数据处理查询并返回结果值。
      行动操作包括:reduce,collect,count,first,take,countByKey以及foreach。
  • 共享变量(Shared varialbes)
    • 广播变量(Broadcast variables)
    • 累加器(Accumulators)
  • Master/Worker/Driver/Executor

    • Master:1. 接受Worker的注册请求,统筹记录所有Worker的CPU、Memory等资源,并跟踪Worker结点的活动状态;2. 接受Driver中App的注册请求(这个请求由Driver端的Client发出),为App在Worker上分配CPU、Memory资源,生成后台Executor进程;之后跟踪Executor和App的活动状态。
    • Worker:负责接收Master的指示,为App创建Executor进程。Worker在Master和Executor之间起着桥梁作用,实际不会参与计算工作。
    • Driver:负责用户侧逻辑处理。
    • Executor:负责计算,接受并执行由App划分的Task任务,并将结果缓存在本地内存或磁盘。

Spark部署

关于Spark的部署网上相关资料很多,这里进行归纳整理

部署环境

  • Ubuntu 14.04LTS
  • Hadoop:2.7.0
  • Java JDK 1.8
  • Spark 1.6.1
  • Scala 2.11.8

Hadoop安装

由于Spark会利用HDFS和YARN,所以需要提前配置Hadoop,配置教程可以参考:
Setting up a Apache Hadoop 2.7 single node on Ubuntu 14.04
Hadoop安装教程_单机/伪分布式配置_Hadoop2.6.0/Ubuntu14.04

Spark安装

在安装好Hadoop的基础上,搭建Spark,配置教程参考:
Spark快速入门指南 – Spark安装与基础使用

scala安装

Scala作为编写Spark的源生语言,更新速度和支持情况肯定是最好的,而另一方面Scala本身语言中对于面向对象和函数式编程两种思想的糅合,使得该语言具有很多炫酷的语法糖,所以在使用Spark的过程中我采用了Scala语言进行开发。

  • Scala最终编译成字节码需要运行在JVM中,所以需要依托于jdk,需要部署jdk
  • Eclipse作为一款开发Java的IDE神器,在Scala中当然也可以使用,有两种方式:
  • 基于以上两步已经可以进行Scala开发,需要用到Scala自带的SBT编译的同学可以装下Scala官网下载地址,本人一直使用Maven进行包管理就延续Maven的使用

简单示例:WordCount(Spark Scala)

  • 开发IDE:Eclipse Scala
  • 包管理:Maven
  • 开发语言:Scala

创建Maven项目


  1. 跳过archetype项目模板的选择
  2. 下载模板pom.xml
  3. 对maven项目添加Scala属性:
    Right click on project -> configure - > Add Scala Nature.
  4. 调整下Scala编译器的版本,与Spark版本对应:
    Right click on project- > Go to properties -> Scala compiler -> update Scala installation version to 2.10.5
  5. 从Build Path中移除Scala Library(由于在Maven中添加了Spark Core的依赖项,而Spark是依赖于Scala的,Scala的jar包已经存在于Maven Dependency中):
    Right click on the project -> Build path -> Configure build path and remove Scala Library Container.
  6. 添加package包com.spark.sample
  7. 创建Object WordCount和SimpleCount,用来作为Spark的两个简单示例

Spark Sample

源码
原理如下图:

参考文献:

  1. http://km.oa.com/group/2430/articles/show/181711?kmref=search&from_page=1&no=1&is_from_iso=1
  2. http://spark.apache.org/docs/latest/programming-guide.html#resilient-distributed-datasets-rdds
  3. http://www.infoq.com/cn/articles/apache-spark-introduction?utm_source=infoq_en&utm_medium=link_on_en_item&utm_campaign=item_in_other_langs
  4. http://www.infoq.com/cn/articles/apache-spark-sql
  5. http://www.infoq.com/cn/articles/apache-spark-streaming
  6. http://www.devinline.com/2016/01/apache-spark-setup-in-eclipse-scala-ide.html
  7. https://databricks.gitbooks.io/databricks-spark-reference-applications/content/
  8. http://wuchong.me/blog/2015/04/06/spark-on-hbase-new-api/
  9. http://colobu.com/2015/01/05/kafka-spark-streaming-integration-summary/
  10. http://www.devinline.com/2016/01/apache-spark-setup-in-eclipse-scala-ide.html

Spark踩坑记——初试的更多相关文章

  1. Spark踩坑记——数据库(Hbase+Mysql)

    [TOC] 前言 在使用Spark Streaming的过程中对于计算产生结果的进行持久化时,我们往往需要操作数据库,去统计或者改变一些值.最近一个实时消费者处理任务,在使用spark streami ...

  2. Spark踩坑记——共享变量

    [TOC] 前言 Spark踩坑记--初试 Spark踩坑记--数据库(Hbase+Mysql) Spark踩坑记--Spark Streaming+kafka应用及调优 在前面总结的几篇spark踩 ...

  3. Spark踩坑记——从RDD看集群调度

    [TOC] 前言 在Spark的使用中,性能的调优配置过程中,查阅了很多资料,之前自己总结过两篇小博文Spark踩坑记--初试和Spark踩坑记--数据库(Hbase+Mysql),第一篇概况的归纳了 ...

  4. [转]Spark 踩坑记:数据库(Hbase+Mysql)

    https://cloud.tencent.com/developer/article/1004820 Spark 踩坑记:数据库(Hbase+Mysql) 前言 在使用Spark Streaming ...

  5. Spark踩坑记——数据库(Hbase+Mysql)转

    转自:http://www.cnblogs.com/xlturing/p/spark.html 前言 在使用Spark Streaming的过程中对于计算产生结果的进行持久化时,我们往往需要操作数据库 ...

  6. Spark踩坑记——Spark Streaming+Kafka

    [TOC] 前言 在WeTest舆情项目中,需要对每天千万级的游戏评论信息进行词频统计,在生产者一端,我们将数据按照每天的拉取时间存入了Kafka当中,而在消费者一端,我们利用了spark strea ...

  7. Spark踩坑记:Spark Streaming+kafka应用及调优

    前言 在WeTest舆情项目中,需要对每天千万级的游戏评论信息进行词频统计,在生产者一端,我们将数据按照每天的拉取时间存入了Kafka当中,而在消费者一端,我们利用了spark streaming从k ...

  8. Spark踩坑记:共享变量

    收录待用,修改转载已取得腾讯云授权 前言 前面总结的几篇spark踩坑博文中,我总结了自己在使用spark过程当中踩过的一些坑和经验.我们知道Spark是多机器集群部署的,分为Driver/Maste ...

  9. 【踩坑记】从HybridApp到ReactNative

    前言 随着移动互联网的兴起,Webapp开始大行其道.大概在15年下半年的时候我接触到了HybridApp.因为当时还没毕业嘛,所以并不清楚自己未来的方向,所以就投入了HybridApp的怀抱. Hy ...

随机推荐

  1. ABP文档 - Javascript Api - AJAX

    本节内容: AJAX操作相关问题 ABP的方式 AJAX 返回信息 处理错误 HTTP 状态码 WrapResult和DontWrapResult特性 Asp.net Mvc 控制器 Asp.net ...

  2. History API与浏览器历史堆栈管理

    移动端开发在某些场景中有着特殊需求,如为了提高用户体验和加快响应速度,常常在部分工程采用SPA架构.传统的单页应用基于url的hash值进行路由,这种实现不存在兼容性问题,但是缺点也有--针对不支持o ...

  3. 设计模式之行为类模式大PK

                                        行为类模式大PK 行为类模式包括责任链模式.命令模式.解释器模式.迭代器模式.中介者模式.备忘录模式.观察者模式.状态模式.策略 ...

  4. C# salt+hash 加密

    一.先明确几个基本概念 1.伪随机数:pseudo-random number generators ,简称为:PRNGs,是计算机利用一定的算法来产生的.伪随机数并不是假随机 数,这里的" ...

  5. ThinkPHP 模板substr的截取字符串函数

    ThinkPHP 模板substr的截取字符串函数在Common/function.php加上以下代码 /** ** 截取中文字符串 **/ function msubstr($str, $start ...

  6. spring无法读取properties文件数据

    只讲述异常点,关于怎么配置文件,这里不做说明.   1. controller中无法读取config.properties文件 controller中注入的@Value配置是从servlet-cont ...

  7. 多线程同步工具——Lock

    本文原创,转载请注明出处. 参考文章: <"JUC锁"03之 公平锁(一)> <"JUC锁"03之 公平锁(二)> 锁分独占锁与共享锁, ...

  8. 为革命保护视力 --- 给 Visual Studio 换颜色

    “为革命,保护视力,预防近视,眼保健操开始......” 这个应该是最老版本的眼保健操了,你听过? 一堆废话 且不说上面这个眼保健操到底有木有用,让眼睛放松下还是很有必要的,尤其是现在天天对着不是手机 ...

  9. 一文搞懂HMM(隐马尔可夫模型)

    什么是熵(Entropy) 简单来说,熵是表示物质系统状态的一种度量,用它老表征系统的无序程度.熵越大,系统越无序,意味着系统结构和运动的不确定和无规则:反之,,熵越小,系统越有序,意味着具有确定和有 ...

  10. Swift -- 对AFN框架的封装

    Swift -- 对AFN框架的封装 一.封装AFN的目的 简单的说: 解耦 日常工作中,我们一般都不会去直接使用AFNetWorking来直接发送网络请求,因为耦合性太强,假设有多个控制器都使用AF ...