coursera机器学习-logistic回归,正则化
#对coursera上Andrew Ng老师开的机器学习课程的笔记和心得;
#注:此笔记是我自己认为本节课里比较重要、难理解或容易忘记的内容并做了些补充,并非是课堂详细笔记和要点;
#标记为<补充>的是我自己加的内容而非课堂内容,参考文献列于文末。博主能力有限,若有错误,恳请指正;
#---------------------------------------------------------------------------------#
logistic function(sigmoid function):g(z) = 1/(1 + e-z),z是一个实数;
我们的预测函数是:
;
logistic函数的图形:
, z>0时,g(z)>0.5;z<0时,g(z)<0.5;
#---------------------------------------------------------------------------------#
Cost function for logistic regression
;
线性回归的Cost function:
,
也可以写成:
;
如果我们使用这个函数作为逻辑回归的代价函数,那么它是非凸函数,不利于最优化;
逻辑回归代价函数的凸函数版本:
,
,
,纵坐标为Cost function;
将上世合并得最终使用的代价函数: cost(hθ, (x),y) = -ylog( hθ(x) ) - (1-y)log( 1- hθ(x) );
使逻辑回归代价函数最小化:

#---------------------------------------------------------------------------------#
Advanced optimization:conjugate gradient,BFGS,L-BFGS;
用这写方法的优点:
1,No need to manually pick alpha (learning rate);
2,Often faster than gradient descent;
3,Can be used successfully without understanding their complexity;
缺点:
1,Could make debugging more difficult;
2,Should not be implemented themselves;
3,Different libraries may use different implementations - may hit performance;
#---------------------------------------------------------------------------------#
多元分类问题
方法: 使用一对多的方法逐项分类,每次分出一个类;
;
还有一对一的方法,这两种方法的优缺点可见台湾大学机器学习第六周第十一讲的内容;
#---------------------------------------------------------------------------------#
过拟合问题:
underfit <=> higher bias;
overfit <=> higher variance, =>unable to generalize (apply to new examples),即不能用来做预测;
;
如何处理过拟合?
1) 减少特征数量
可用人工选择要保留的特征;
也可用模型来选择特征;
减少特征会失去一些信息,即使特征选的很好;
2) 正则化(Regularization)
保留所有特征,但减少θ的大小;
当我们有很多特征时,这个方法非常有效;
<补充>模型选择的典型方法是正则化。正则化是结构风险最小化策略的实现,是在经验风险上加一个正则化项(regularizer)或惩罚项(penalty term)。正则化项一般是模型复杂度的单调递增函数,模型越复杂,正则化项就越大;
<补充>正则化的作用是选择经验风险最小和模型复杂度同时较小的模型;从贝叶斯估计的角度来看,正则化项对应于模型的先验概率;
#---------------------------------------------------------------------------------#
正则化的代价函数最优化
;
;
;
λ 是正则化参数;使得某几项θ变的很小;
如果λ很大,那么所有的θ参数都会变得很小,造成 underfitting,bias;
#---------------------------------------------------------------------------------#
线性回归的正则化
;
,
也即是
;
Regularization with the normal equation
;
逻辑回归的正则化

;
#---------------------------------------------------------------------------------#
Advanced optimization of regularized linear regression
;
#---------------------------------------------------------------------------------#
参考文献:
《统计学习方法》,李航著;
coursera: standford machine learning, by Andrew Ng;
coursera: 台湾大学機器學習基石,by 林軒田;
coursera机器学习-logistic回归,正则化的更多相关文章
- 机器学习——logistic回归,鸢尾花数据集预测,数据可视化
0.鸢尾花数据集 鸢尾花数据集作为入门经典数据集.Iris数据集是常用的分类实验数据集,由Fisher, 1936收集整理.Iris也称鸢尾花卉数据集,是一类多重变量分析的数据集.数据集包含150个数 ...
- 机器学习——Logistic回归
1.基于Logistic回归和Sigmoid函数的分类 2.基于最优化方法的最佳回归系数确定 2.1 梯度上升法 参考:机器学习--梯度下降算法 2.2 训练算法:使用梯度上升找到最佳参数 Logis ...
- 机器学习——Logistic回归
参考<机器学习实战> 利用Logistic回归进行分类的主要思想: 根据现有数据对分类边界线建立回归公式,以此进行分类. 分类借助的Sigmoid函数: Sigmoid函数图: Sigmo ...
- 机器学习--Logistic回归
logistic回归 很多时候我们需要基于一些样本数据去预测某个事件是否发生,如预测某事件成功与失败,某人当选总统是否成功等. 这个时候我们希望得到的结果是 bool型的,即 true or fals ...
- 机器学习 Logistic 回归
Logistic regression 适用于二分分类的算法,用于估计某事物的可能性. logistic分布表达式 $ F(x) = P(X<=x)=\frac{1}{1+e^{\frac{-( ...
- 机器学习-- Logistic回归 Logistic Regression
转载自:http://blog.csdn.net/linuxcumt/article/details/8572746 1.假设随Tumor Size变化,预测病人的肿瘤是恶性(malignant)还是 ...
- 吴恩达-机器学习+Logistic回归分类方案
- Spark2.0机器学习系列之4:Logistic回归及Binary分类(二分问题)结果评估
参数设置 α: 梯度上升算法迭代时候权重更新公式中包含 α : http://blog.csdn.net/lu597203933/article/details/38468303 为了更好理解 α和 ...
- 机器学习实战之Logistic回归
Logistic回归一.概述 1. Logistic Regression 1.1 线性回归 1.2 Sigmoid函数 1.3 逻辑回归 1.4 LR 与线性回归的区别 2. LR的损失函数 3. ...
随机推荐
- ZooKeeper----Java实例文档
**************************************************************************************************** ...
- hibernate简单注释(一.1)
**************************************************************************************************** ...
- spring容器加载完毕做一件事情(利用ContextRefreshedEvent事件)转
关键字:spring容器加载完毕做一件事情(利用ContextRefreshedEvent事件) 应用场景:很多时候我们想要在某个类加载完毕时干某件事情,但是使用了spring管理对象,我们这个类引用 ...
- Webform(Linq增删改查)
Linq高集成化的数据访问类,它会自动映射数据库结构,将表名完整映射成为类名,将列名完整映射成字段名数据库数据访问,能大大减少代码量.(1)Linq创建添加LINQ to SQL类,类名需与要连接的数 ...
- Quartz.NET开源作业调度框架系列(一):快速入门step by step
Quartz.NET是一个被广泛使用的开源作业调度框架 , 由于是用C#语言创建,可方便的用于winform和asp.net应用程序中.Quartz.NET提供了巨大的灵活性但又兼具简单性.开发人员可 ...
- javascript 图片淡入淡出效果 实例源代码
代码说明:把代码粘贴好之后,需要更改html代码中的图片路径,即可执行成功.后面还有对js代码的详细说明,希望大家好好消化,好好理解. html源代码: <head> <title& ...
- ae
根据属性提取要素(利用GP) http://blog.csdn.net/ewyetc/article/details/6746728
- Python 操作 MySQL 之 pysql 与 ORM(转载)
本文针对 Python 操作 MySQL 主要使用的两种方式讲解: 原生模块 pymsql ORM框架 SQLAchemy 本章内容: pymsql 执行 sql 增\删\改\查 语句 pymsql ...
- Oracle12C相关
1.jar包安装到MVN本地库 mvn install:install-file -DgroupId=com.oracle -DartifactId=ojdbc6 -Dversion=11.2.0.1 ...
- DevExpress v15.2.4帮助文档下载(全)
原文地址:http://www.devexpresscn.com/Resources/Documentation-498.html DevExpress v15.2帮助文档下载列表大全来啦!包含.ne ...