4.airflow测试
当前生产上的任务主要分为两部分:sqoop任务和hive计算任务,测试这两种任务,分别以shell文件和直接执行命令的方式来测试.
本次测试的表是airflow.code_library.
1.测试sqoop任务
1.1 测试全量抽取
1.1.1.直接执行命令
from airflow import DAG
from airflow.operators.bash_operator import BashOperator
from datetime import datetime, timedelta
default_args = {
'owner': 'yangxw',
'depends_on_past': False,
'start_date': datetime(2017, 5, 23),
}
dag = DAG('sqoop4', default_args=default_args,schedule_interval=None)
bash_cmd = '''
sqoop import \
--connect jdbc:oracle:thin:@//XX.XX.XX.XX/aaaa \
--username bbbb --password 'cccc' \
--query " select CODENO, ITEMNO, ITEMNAME, BANKNO, SORTNO, ISINUSE, ITEMDESCRIBE, ITEMATTRIBUTE, RELATIVECODE, ATTRIBUTE1, ATTRIBUTE2, ATTRIBUTE3, ATTRIBUTE4, ATTRIBUTE5, ATTRIBUTE6, ATTRIBUTE7, ATTRIBUTE8, INPUTUSER, INPUTORG, INPUTTIME, UPDATEUSER, UPDATETIME, REMARK, HELPTEXT , to_char(SysDate,'YYYY-MM-DD HH24:mi:ss') as etl_in_dt from XDGL.CODE_LIBRARY where \$CONDITIONS " \
--hcatalog-database airflow \
--hcatalog-table CODE_LIBRARY \
--hcatalog-storage-stanza 'stored as ORC' \
--hive-overwrite \
--hive-delims-replacement " " -m 1
'''
t1 = BashOperator(
task_id='sqoopshell',
bash_command=bash_cmd,
dag=dag)
from airflow import DAG
from airflow.operators.bash_operator import BashOperator
from datetime import datetime, timedelta
default_args = {
'owner': 'yangxw',
'depends_on_past': False,
'start_date': datetime(2017, 5, 23),
}
dag = DAG('sqoop4', default_args=default_args,schedule_interval=None)
bash_cmd = '''
sqoop import \
--connect jdbc:oracle:thin:@//XX.XX.XX.XX/aaaa \
--username bbbb --password 'cccc' \
--query " select CODENO, ITEMNO, ITEMNAME, BANKNO, SORTNO, ISINUSE, ITEMDESCRIBE, ITEMATTRIBUTE, RELATIVECODE, ATTRIBUTE1, ATTRIBUTE2, ATTRIBUTE3, ATTRIBUTE4, ATTRIBUTE5, ATTRIBUTE6, ATTRIBUTE7, ATTRIBUTE8, INPUTUSER, INPUTORG, INPUTTIME, UPDATEUSER, UPDATETIME, REMARK, HELPTEXT , to_char(SysDate,'YYYY-MM-DD HH24:mi:ss') as etl_in_dt from XDGL.CODE_LIBRARY where \$CONDITIONS " \
--hcatalog-database airflow \
--hcatalog-table CODE_LIBRARY \
--hcatalog-storage-stanza 'stored as ORC' \
--hive-overwrite \
--hive-delims-replacement " " -m 1
'''
t1 = BashOperator(
task_id='sqoopshell',
bash_command=bash_cmd,
dag=dag)
测试成功,数据导入到表中.
1.1.2.以shell文件方式执行sqoop或hive任务
上述步骤虽然可以执行成功,但是如果要truncate 表,那么还要需要再增加一个task来执行truncate命令,这样一个ETL任务就要分成两个task很不方便.通过shell将truncate和import放在一起执行.
1)创建dag
from airflow import DAG
from airflow.operators.bash_operator import BashOperator
from datetime import datetime, timedelta
default_args = {
'owner': 'yangxw',
'depends_on_past': False,
'start_date': datetime(2017, 5, 23)
}
dag = DAG('sqoop7', default_args=default_args,schedule_interval=None)
bash_cmd = 'sh /home/airflow/sqoop3.sh'
t1 = BashOperator(
task_id='sqoop7',
bash_command=bash_cmd,
dag=dag)
2)创建shell文件
hive -e "truncate table airflow.CODE_LIBRARY"
sqoop import \
--connect jdbc:oracle:thin:@//AAAA/BBB \
--username CCC --password 'DDD' \
--query " select CODENO, ITEMNO, ITEMNAME, BANKNO, SORTNO, ISINUSE, ITEMDESCRIBE, ITEMATTRIBUTE, RELATIVECODE, ATTRIBUTE1, ATTRIBUTE2, ATTRIBUTE3, ATTRIBUTE4, ATTRIBUTE5, ATTRIBUTE6, ATTRIBUT
E7, ATTRIBUTE8, INPUTUSER, INPUTORG, INPUTTIME, UPDATEUSER, UPDATETIME, REMARK, HELPTEXT , to_char(SysDate,'YYYY-MM-DD HH24:mi:ss') as etl_in_dt from XDGL.CODE_LIBRARY where \$CONDITIONS " \
--hcatalog-database airflow \
--hcatalog-table CODE_LIBRARY \
--hcatalog-storage-stanza 'stored as ORC' \
--hive-overwrite \
--hive-delims-replacement " " -m 1
将这些文件分发到scheduler和worker节点上,然后执行:
查看日志会报错:
…………
[2017-05-24 10:55:52,853] {base_task_runner.py:95} INFO - Subtask: File "/opt/anaconda2/lib/python2.7/site-packages/jinja2/loaders.py", line 187, in get_source
[2017-05-24 10:55:52,853] {base_task_runner.py:95} INFO - Subtask: raise TemplateNotFound(template)
[2017-05-24 10:55:52,854] {base_task_runner.py:95} INFO - Subtask: jinja2.exceptions.TemplateNotFound: sh /home/airflow/sqoop3.sh
这是airflow的一个bug,默认会使用jinja2的语法来解析task.
将
bash_cmd = 'sh /home/airflow/sqoop3.sh' 修改为
bash_cmd = '{{"sh /home/airflow/sqoop3.sh"}}' 即可
测试成功.或者使用:
bash_cmd = '''
sh /home/airflow/sqoop3.sh
'''
也可以执行成功.
1.2 测试增量抽取
新建个dag,sqoop8.
dag = DAG('sqoop8', default_args=default_args,schedule_interval=None)
bash_cmd = '''
sh /home/airflow/sqoop4.sh %s
''' % '2017-05-24'
t1 = BashOperator(
task_id='sqoop8',
bash_command=bash_cmd,
dag=dag)
创建shell:
hive -e "alter table airflow.ACCT_FEE_ARCH drop partition(p_day='$1');"
sqoop import --connect jdbc:oracle:thin:@//AAA/BBB --username CCC --password 'DDD' \
--query " select SERIALNO, \
……
to_char(SYNCHDATE, 'YYYY-MM-DD HH24:mi:ss') as SYNCHDATE , to_char(SysDate,'YYYY-MM-DD HH24:mi:ss') as ETL_IN_DT \
from XDGL.ACCT_FEE_ARCH \
where SYNCHDATE < (TO_DATE('$1', 'YYYY-MM-DD') +1) and SYNCHDATE >= (TO_DATE('$1', 'YYYY-MM-DD')) and \$CONDITIONS " \
--hcatalog-database airflow \
--hcatalog-table ACCT_FEE_ARCH \
--hcatalog-storage-stanza 'stored as ORC' \
--hive-partition-key p_day --hive-partition-value $1 \
--hive-delims-replacement " " -m 1
2.测试hive任务
上面以shell方式执行了hive truncate任务,下面以命令的方式执行sql文件.
创建sqoop9:
from airflow import DAG
from airflow.operators.bash_operator import BashOperator
from datetime import datetime, timedelta
from airflow.models import Variable
default_args = {
'owner': 'yangxw',
'depends_on_past': False,
'start_date': datetime(2017, 5, 23)
}
dag = DAG('hivesh2', default_args=default_args,schedule_interval=None)
str1 = Variable.get("str1")
bash_cmd = '''
hive -f "/home/airflow/hive1.sql" -hivevar tbname=%s
''' % str1
t1 = BashOperator(
task_id='hivesh2',
bash_command=bash_cmd,
dag=dag)
创建hive sql文件:
insert overwrite table airflow.tab_cnt select '${tbname}', count(*) from ${tbname}
在页面上创建变量 str1=airflow.ACCT_FEE_ARCH
执行成功.
3.总结
1.如果执行shell,一定要用jinja2语法或者''' ''':
bash_cmd = '{{" sh /home/airflow/sqoop1.sh"}}' 或者
bash_cmd = '''
sh /home/airflow/sqoop1.sh
'''
2.所有的文件必须复制到所有节点
python文件\shell文件\sql文件,必须复制到所有的webserver scheduler worker节点
3.有时候使用python命令编译不出来pyc文件,在页面上只能看到dag名称,不能看到代码及调度等.这时使用
python -m py_compile XXX.py 来编译
4.airflow的dag一旦创建就无法删除,错误的或者多余的dag可以设置为pause模式并隐藏.
5.shell的方式适合执行sqoop任务,可以将truncate table\drop partition和import一步执行完成,不用起两个task来执行.命令的方式适合执行hive 任务,通过hive -f XXX.sql --hivevar a=%s b=%s的方式,动态的传递参数给hive.
4.airflow测试的更多相关文章
- Airflow Comman Line 测试
官网文档:https://incubator-airflow.readthedocs.io/en/latest/cli.html clear (1)clear 指定日期某一个dag下的任务,任务名可以 ...
- 灵活可扩展的工作流管理平台Airflow
1. 引言 Airflow是Airbnb开源的一个用Python写就的工作流管理平台(workflow management platform).在前一篇文章中,介绍了如何用Crontab管理数据流, ...
- 系统研究Airbnb开源项目airflow
开源项目airflow的一点研究 调研了一些几个调度系统, airflow 更满意一些. 花了些时间写了这个博文, 这应该是国内技术圈中最早系统性研究airflow的文章了. 转载请注明出处 htt ...
- 【原创】大数据基础之Airflow(1)简介、安装、使用
airflow 1.10.0 官方:http://airflow.apache.org/ 一 简介 Airflow is a platform to programmatically author, ...
- airflow笔记
airflow webserver --debug & # debug 模式,在后台启动webserver airflow list_dags airflow list_tasks tuto ...
- 20170803 Airflow自带的API进行GET 和POST动作部分内容
--1 首先你要有安装好的Airflow 环境并且在配置文件中有启用API 属性 --2 就是GET 和POST 方法的调用了 这里说一下,由于Airflow在网络上的资料比较少,可以从GETHUB中 ...
- 开源数据流管道-Luigi vs Azkaban vs Oozie vs Airflow
原文链接:https://www.jianshu.com/p/4ae1faea733b 随着企业的发展,他们的工作流程变得更加复杂,越来越多的有着错综复杂依赖关系的工作流需要增加监控,故障排除.如果没 ...
- Python测试 ——开发工具库
Web UI测试自动化 splinter - web UI测试工具,基于selnium封装. selenium - web UI自动化测试. mechanize- Python中有状态的程序化Web浏 ...
- apache airflow docker 运行简单试用
airflow 是一个编排.调度和监控workflow的平台,由Airbnb开源,现在在Apache Software Foundation 孵化. airflow 将workflow编排为tasks ...
随机推荐
- eclipse的svn插件
SVN插件下载地址及更新地址,你根据需要选择你需要的版本.现在最新是1.8.xLinks for 1.8.x Release:Eclipse update site URL: http://subcl ...
- js(jQuery)tips
一:页面加上$(function(){***内容***})与不加的区别 1.这个是DOM加载完之后再加载JS代码,你的JS如果放在文档后面可能一样,但是如果你要是把JS放在head里面就有差别了(放在 ...
- react 使用antd 按需加载
使用 react-app-rewired 1. 安装react-app-rewired: 由于新的 react-app-rewired@2.x 版本的关系,你还需要安装 customize-cra. ...
- java通过get或post方式传到PHP的某控制器的某方法下
[java]package test4;import java.io.BufferedReader;import java.io.IOException;import java.io.InputStr ...
- Linux单用户CS模型TCP通讯完全注释手册
Linux单用户CS模型TCP通讯完全注释手册 server 描述 实现一个简单的Linux单用户CS通讯,客户端发送一串字符串,服务器将其转换为大写后返回. server 代码 ``` #inclu ...
- IOTutility 一个轻量级的 IOT 基础操作库
IOTutility 一个轻量级的 IOT 基础操作库 Base utility for IOT devices, networking, controls etc... IOTutility 的目的 ...
- Python3 透明网桥算法
import time #定义网桥1 b1 = {} port_list1 = [1, 2] #主机列表 L1 = ['a','b','c'] L2 = ['d','e'] L = [L1,L2] d ...
- 详解LeetCode 137. Single Number II
Given an array of integers, every element appears three times except for one, which appears exactly ...
- SAP 直接修改程序的方法
一般项目上都会有这么个神奇的程序,能在测试机和生产机上直接修改程序... REPORT ztest_change. "变量定义 , line() TYPE c, "如果代码中某行大 ...
- spark submit参数及调优(转载)
spark submit参数介绍 你可以通过spark-submit --help或者spark-shell --help来查看这些参数. 使用格式: ./bin/spark-submit \ -- ...