牛客Wannafly挑战赛23F 计数(循环卷积+拉格朗日插值/单位根反演)
传送门
直接的想法就是设 \(x^k\) 为边权,矩阵树定理一波后取出 \(x^{nk}\) 的系数即可
也就是求出模 \(x^k\) 意义下的循环卷积的常数项
考虑插值出最后多项式,类比 \(DFT\) 的方法
假设我们要求
\]
\(A,B,C\) 为多项式
我们知道了 \(A,B\) 的 \(n\) 个点值
\]
\]
那么
\]
而根据消去引理 \(w_n^{k(i+j)}=w_n^{k((i+j)~mod~n)}\)
所以
\]
正好对应了循环卷积,所以只要求得到 \(w_n^{k},(k=0...n-1)\) 的点值就可以得到最后的多项式了
这道题 \(p~mod~k=1\) 所以直接用原根就好了,最后插值一下
upd: 其实最后并不需要插值
根据单位根反演
\]
把多项式的每一项都换成这个东西,得到的值就是要的答案
也就是说直接带入每一个单位根,把矩阵树定理得到的权值加起来最后除去 \(k\) 就好了
# include <bits/stdc++.h>
using namespace std;
typedef long long ll;
int n, m, k, mod, g, pr[233333], tot, a[105][105];
int xi[105], yi[105];
struct Edge {
int u, v, w;
} edge[10005];
inline int Pow(ll x, int y) {
register ll ret = 1;
for (; y; y >>= 1, x = x * x % mod)
if (y & 1) ret = ret * x % mod;
return ret;
}
inline void Inc(int &x, int y) {
x = x + y >= mod ? x + y - mod : x + y;
}
inline void Getrt() {
register int x, i, j;
for (x = mod - 1, i = 2; i * i <= x; ++i)
if (x % i == 0) {
pr[++tot] = i;
while (x % i == 0) x /= i;
}
if (x > 1) pr[++tot] = x;
for (x = mod - 1, i = 2; i <= x; ++i) {
for (g = i, j = 1; g && j <= tot; ++j)
if (Pow(g, x / pr[j]) == 1) g = 0;
if (g) break;
}
}
inline int Gauss() {
register int ans = 1, i, j, l, inv;
for (i = 1; i < n; ++i) {
for (j = i; j < n; ++j)
if (a[j][i]) {
if (i != j) swap(a[i], a[j]), ans = mod - ans;
break;
}
for (j = i + 1; j < n; ++j)
if (a[j][i]) {
inv = (ll)a[j][i] * Pow(a[i][i], mod - 2) % mod;
for (l = i; l < n; ++l) Inc(a[j][l], mod - (ll)a[i][l] * inv % mod);
}
ans = (ll)ans * a[i][i] % mod;
}
return ans;
}
int main() {
register int i, j, w, u, v, ans;
scanf("%d%d%d%d", &n, &m, &k, &mod), Getrt();
for (i = 1; i <= m; ++i) scanf("%d%d%d", &edge[i].u, &edge[i].v, &edge[i].w);
xi[0] = 1, xi[1] = Pow(g, (mod - 1) / k);
for (i = 0; i < k; ++i) {
if (i > 1) xi[i] = (ll)xi[i - 1] * xi[1] % mod;
memset(a, 0, sizeof(a));
for (j = 1; j <= m; ++j) {
u = edge[j].u, v = edge[j].v, w = Pow(xi[i], edge[j].w);
Inc(a[u][u], w), Inc(a[v][v], w), Inc(a[u][v], mod - w), Inc(a[v][u], mod - w);
}
yi[i] = Gauss();
}
for (i = ans = 0; i < k; ++i) {
for (w = yi[i], j = 0; j < k; ++j)
if (i ^ j) w = (ll)w * (mod - xi[j]) % mod * Pow((xi[i] + mod - xi[j]) % mod, mod - 2) % mod;
Inc(ans, w);
}
printf("%d\n", ans);
return 0;
}
牛客Wannafly挑战赛23F 计数(循环卷积+拉格朗日插值/单位根反演)的更多相关文章
- 牛客wannafly 挑战赛14 B 前缀查询(trie树上dfs序+线段树)
牛客wannafly 挑战赛14 B 前缀查询(trie树上dfs序+线段树) 链接:https://ac.nowcoder.com/acm/problem/15706 现在需要您来帮忙维护这个名册, ...
- 牛客~~wannafly挑战赛19~A 队列
链接:https://www.nowcoder.com/acm/contest/131/A来源:牛客网 题目描述 ZZT 创造了一个队列 Q.这个队列包含了 N 个元素,队列中的第 i 个元素用 Qi ...
- 牛客Wannafly挑战赛23 B.游戏
游戏 题目描述 小N和小O在玩游戏.他们面前放了n堆石子,第i堆石子一开始有ci颗石头.他们轮流从某堆石子中取石子,不能不取.最后无法操作的人就输了这个游戏.但他们觉得这样玩太无聊了,更新了一下规则. ...
- 牛客Wannafly挑战赛11E 白兔的刁难
传送门 如果大力推单位根反演就可以获得一个 \(k^2logn\) 的好方法 \[ans_{t}=\frac{1}{k}\sum_{i=0}^{k-1}(w_k^{-t})^i(w_k^i+1)^n\ ...
- 【牛客Wannafly挑战赛23】F 计数
题目链接 题意 给定一张边带权的无向图,求生成树的权值和是 k 的倍数的生成树个数模 p 的值. \(n\leq 100,k\leq 100,p\mod k=1\) Sol 看见整除然后 \(p\mo ...
- 牛客 Wannafly 挑战赛26D 禁书目录 排列组合 概率期望
原文链接https://www.cnblogs.com/zhouzhendong/p/9781060.html 题目传送门 - NowCoder Wannafly 26D 题意 放一放这一题原先的题面 ...
- 牛客Wannafly挑战赛26E 蚂蚁开会(树链剖分+线段树)
传送门 题面描述 一颗n个节点的树,m次操作,有点权(该节点蚂蚁个数)和边权(相邻节点的距离). 三种操作: 操作1:1 i x将节点i的点权修改为x.(1 <= i <= n; 1 &l ...
- 牛客 Wannafly挑战赛27 D 绿魔法师
传送门 \(\color{green}{solution}\) 分析下,在\(1e5+1\)内,一个数的约数个数最多为\(2^{6}\)个,所以我们可以考虑枚举约数 复杂度\(O(N^{2^{6 \t ...
- [牛客Wannafly挑战赛27D]绿魔法师
description newcoder 给你一个空的可重集合\(S\). \(n\)次操作,每次操作给出\(x\),\(k\),\(p\),执行以下操作: \(opt\ 1\):在S中加入x. \( ...
随机推荐
- 酱油 Noip2018颓废记
也不知道写一些什么了 凑和着写写吧 最近十分的¥#&(^ --#%!*%¥^#$# Day -1 上午考了一场试 就\(TM\)考了60分 好不容易积攒起来的信心啊~~~~~~ 就这么垮了~~ ...
- leetcode-383-Ransom Note(以空间换时间)
题目描述: Given an arbitrary ransom note string and another string containing letters from all the magaz ...
- 编程开发之--java多线程学习总结(6)
5.测试 package com.lfy.ThreadsSynchronize; public class Test { public static void main(String[] args) ...
- 使用Chrome-headless模式下,截屏不全屏的问题
在headless模式下,是没有打开浏览器窗口的,那么driver.maximize_window(),找不到目标也打不开. 我们可以换一种方式,去在无头模式下,指定浏览器的窗口大小运行即可. __o ...
- [转] Linux History(历史)命令用法 15 例
[From]https://linuxtoy.org/archives/history-command-usage-examples.html 如果你经常使用 Linux 命令行,那么使用 histo ...
- Axis2 Web Service Development & Deployment Guide(Axis2使用)
主要内容: 记录关于Axis2的使用,通过WSDL文件生成Web service的客户端和服务器端的过程. 目录: Requirement(必备工具) Development - Client Gen ...
- netty用户指南
Netty用户指南 一.前言 1.问题 当今世界我们需要使用通用的软件或库与其他组件进行通信,例如使用HTTP客户端从服务器中获取信息,或通过网络服务调用一个远程的方法.然而通用的协议及其实现通常不具 ...
- 一段自用javascript代码
function jsontoarray(mjson) { var arr = []; ; for(var x in mjson.data){ arr[i] = new Array(); arr[i] ...
- 开发者必备的12个JavaScript库
现在 web 设计是最有趣的了,做好 web 设计不仅要熟练使用 Javascript,css 和 html 等,还要有自己的创意设计.为了方便大家发挥自己的创意,就产生了很多 JS 框架,Node. ...
- 关于Java 下 Snappy压缩存文件
坑点: 压缩后的byte 数组中会有元素是负数,如果转化成String 存入文件,然后再读取解压缩还原,无法得到原来的结果,甚至是无法解压缩. 原因分析: String 底层是由char 数组构成的, ...