pandas 基础

serise

import pandas as pd
from pandas import Series, DataFrame
obj = Series([4, -7, 5, 3])
obj
0    4
1 -7
2 5
3 3
dtype: int64
obj.values
array([ 4, -7,  5,  3], dtype=int64)
obj.index
RangeIndex(start=0, stop=4, step=1)
obj[[1,3]]
# 跳着选取数据
1   -7
3 3
dtype: int64
obj[1:3]
1   -7
2 5
dtype: int64
pd.isnull(obj)
0    False
1 False
2 False
3 False
dtype: bool
  • reindex可以用来插值
obj.reindex(range(5), method = 'ffill')
0    4
1 -7
2 5
3 3
4 3
dtype: int64
  • 标签切片是闭区间的

dataframe

data = {'state': ['asd','qwe','sdf','ert'],
'year': [2000, 2001, 2002, 2003],
'pop': [1.5,1.7,3.6,2.4]}
data = DataFrame(data)
data

.dataframe thead tr:only-child th {
text-align: right;
}

.dataframe thead th {
text-align: left;
} .dataframe tbody tr th {
vertical-align: top;
}
pop state year
0 1.5 asd 2000
1 1.7 qwe 2001
2 3.6 sdf 2002
3 2.4 ert 2003
data.year
# 比r里提取列要方便点
0    2000
1 2001
2 2002
3 2003
Name: year, dtype: int64
data['debt'] = range(4)
data

.dataframe thead tr:only-child th {
text-align: right;
}

.dataframe thead th {
text-align: left;
} .dataframe tbody tr th {
vertical-align: top;
}
pop state year debt
0 1.5 asd 2000 0
1 1.7 qwe 2001 1
2 3.6 sdf 2002 2
3 2.4 ert 2003 3
  • index是不能修改的
a = data.index
a[1] = 6
---------------------------------------------------------------------------

TypeError                                 Traceback (most recent call last)

<ipython-input-9-57677294f950> in <module>()
1 a = data.index
----> 2 a[1] = 6 F:\Anaconda\lib\site-packages\pandas\core\indexes\base.py in __setitem__(self, key, value)
1668
1669 def __setitem__(self, key, value):
-> 1670 raise TypeError("Index does not support mutable operations")
1671
1672 def __getitem__(self, key): TypeError: Index does not support mutable operations
data.columns
Index(['pop', 'state', 'year', 'debt'], dtype='object')
  • .ix标签索引功能,输入行和列
  • 不加.ix只能选取其中的某列或某行,不能列与行同时选取
data[:3]

.dataframe thead tr:only-child th {
text-align: right;
}

.dataframe thead th {
text-align: left;
} .dataframe tbody tr th {
vertical-align: top;
}
pop state year debt
0 1.5 asd 2000 0
1 1.7 qwe 2001 1
2 3.6 sdf 2002 2
data.ix[:,:3]

.dataframe thead tr:only-child th {
text-align: right;
}

.dataframe thead th {
text-align: left;
} .dataframe tbody tr th {
vertical-align: top;
}
pop state year
0 1.5 asd 2000
1 1.7 qwe 2001
2 3.6 sdf 2002
3 2.4 ert 2003
  • 删除某列用drop,axis = 0表示行,1表示列
  • 删除后原数据不变
data.drop(0,axis=0)

.dataframe thead tr:only-child th {
text-align: right;
}

.dataframe thead th {
text-align: left;
} .dataframe tbody tr th {
vertical-align: top;
}
pop state year debt
1 1.7 qwe 2001 1
2 3.6 sdf 2002 2
3 2.4 ert 2003 3
data.drop('year', axis=1)

.dataframe thead tr:only-child th {
text-align: right;
}

.dataframe thead th {
text-align: left;
} .dataframe tbody tr th {
vertical-align: top;
}
pop state debt
0 1.5 asd 0
1 1.7 qwe 1
2 3.6 sdf 2
3 2.4 ert 3
data

.dataframe thead tr:only-child th {
text-align: right;
}

.dataframe thead th {
text-align: left;
} .dataframe tbody tr th {
vertical-align: top;
}
pop state year debt
0 1.5 asd 2000 0
1 1.7 qwe 2001 1
2 3.6 sdf 2002 2
3 2.4 ert 2003 3
import numpy as np
df = DataFrame(np.arange(9).reshape(3, 3))
df

.dataframe thead tr:only-child th {
text-align: right;
}

.dataframe thead th {
text-align: left;
} .dataframe tbody tr th {
vertical-align: top;
}
0 1 2
0 0 1 2
1 3 4 5
2 6 7 8
  • applymap()可以对dataframe每一个元素运用函数
  • apply()可以对每一维数组运用函数
df.applymap(lambda x: '%.2f' % x)

.dataframe thead tr:only-child th {
text-align: right;
}

.dataframe thead th {
text-align: left;
} .dataframe tbody tr th {
vertical-align: top;
}
0 1 2
0 0.00 1.00 2.00
1 3.00 4.00 5.00
2 6.00 7.00 8.00
data.sort_values(by='pop')
# 对某一列排序

.dataframe thead tr:only-child th {
text-align: right;
}

.dataframe thead th {
text-align: left;
} .dataframe tbody tr th {
vertical-align: top;
}
pop state year debt
0 1.5 asd 2000 0
1 1.7 qwe 2001 1
3 2.4 ert 2003 3
2 3.6 sdf 2002 2
data.describe()

.dataframe thead tr:only-child th {
text-align: right;
}

.dataframe thead th {
text-align: left;
} .dataframe tbody tr th {
vertical-align: top;
}
pop year debt
count 4.000000 4.000000 4.000000
mean 2.300000 2001.500000 1.500000
std 0.948683 1.290994 1.290994
min 1.500000 2000.000000 0.000000
25% 1.650000 2000.750000 0.750000
50% 2.050000 2001.500000 1.500000
75% 2.700000 2002.250000 2.250000
max 3.600000 2003.000000 3.000000
df.isin([1])

.dataframe thead tr:only-child th {
text-align: right;
}

.dataframe thead th {
text-align: left;
} .dataframe tbody tr th {
vertical-align: top;
}
0 1 2
0 False True False
1 False False False
2 False False False
  • None、NaN会被当作NA处理
  • df.shape不加括号相当于dim()
df.shape
(3, 3)
  • dropna删除缺失值
df.ix[:1, :1] = None
df

.dataframe thead tr:only-child th {
text-align: right;
}

.dataframe thead th {
text-align: left;
} .dataframe tbody tr th {
vertical-align: top;
}
0 1 2
0 NaN NaN 2
1 NaN NaN 5
2 6.0 7.0 8
  • 填充缺失值可以调用字典,不同行添加不同值
df.fillna({0:11, 1:22})

.dataframe thead tr:only-child th {
text-align: right;
}

.dataframe thead th {
text-align: left;
} .dataframe tbody tr th {
vertical-align: top;
}
0 1 2
0 11.0 22.0 2
1 11.0 22.0 5
2 6.0 7.0 8
df

.dataframe thead tr:only-child th {
text-align: right;
}

.dataframe thead th {
text-align: left;
} .dataframe tbody tr th {
vertical-align: top;
}
0 1 2
0 NaN NaN 2
1 NaN NaN 5
2 6.0 7.0 8
df.fillna({0:11, 1:22}, inplace=True)

.dataframe thead tr:only-child th {
text-align: right;
}

.dataframe thead th {
text-align: left;
} .dataframe tbody tr th {
vertical-align: top;
}
0 1 2
0 11.0 22.0 2
1 11.0 22.0 5
2 6.0 7.0 8
df

.dataframe thead tr:only-child th {
text-align: right;
}

.dataframe thead th {
text-align: left;
} .dataframe tbody tr th {
vertical-align: top;
}
0 1 2
0 11.0 22.0 2
1 11.0 22.0 5
2 6.0 7.0 8
  • inplace修改对象不产生副本

python学习笔记(四):pandas基础的更多相关文章

  1. python学习笔记四 迭代器,生成器,装饰器(基础篇)

    迭代器 __iter__方法返回一个迭代器,它是具有__next__方法的对象.在调用__next__方法时,迭代器会返回它的下一个值,若__next__方法调用迭代器 没有值返回,就会引发一个Sto ...

  2. Python学习笔记一(基础信息)

    目录 输入输出 数据类型和变量 整数 浮点数 字符串 布尔值 空值 变量 常量 小结 欢迎关注我的博客我在马路边 说明:此笔记不是从零开始,在学习的过程中感觉需要记录一些比较重要和需要重复浏览的信息, ...

  3. PYTHON 爬虫笔记四:正则表达式基础用法

    知识点一:正则表达式详解及其基本使用方法 什么是正则表达式 正则表达式对子符串操作的一种逻辑公式,就是事先定义好的一些特定字符.及这些特定字符的组合,组成一个‘规则字符串’,这个‘规则字符串’用来表达 ...

  4. 吴裕雄--python学习笔记:爬虫基础

    一.什么是爬虫 爬虫:一段自动抓取互联网信息的程序,从互联网上抓取对于我们有价值的信息. 二.Python爬虫架构 Python 爬虫架构主要由五个部分组成,分别是调度器.URL管理器.网页下载器.网 ...

  5. Python学习笔记(四)Python函数的参数

    Python的函数除了正常使用的必选参数外,还可以使用默认参数.可变参数和关键字参数. 默认参数 基本使用 默认参数就是可以给特定的参数设置一个默认值,调用函数时,有默认值得参数可以不进行赋值,如: ...

  6. Java基础学习笔记四 Java基础语法

    数组 数组的需求 现在需要统计某公司员工的工资情况,例如计算平均工资.最高工资等.假设该公司有50名员工,用前面所学的知识完成,那么程序首先需要声明50个变量来分别记住每位员工的工资,这样做会显得很麻 ...

  7. Python学习笔记四

    一.装饰器 1.知识储备 函数对象 函数可以被引用 函数可以当参数传递 返回值可以是函数 可以当作容器的元素 def func1(): print (666) def func2(): print ( ...

  8. Python学习笔记四:面向对象编程

    一:定义类并创建实例 Python中定义类,通过class关键字,类名开头大写,参数列表为所继承的父类.如果没有需要明确继承的类,则继承object. 使用类来创建对象,只需 类名+() 形式即可,p ...

  9. python学习笔记(四) 思考和准备

    一.zip的坑 zip()函数接收多个可迭代数列,将数列中的元素重新组合,在3.0中返回迭代器指向 数列首地址,在3.0以下版本返回List类型的列表数列.我用的是3.5版本python, 所以zip ...

  10. 【Python学习笔记】Pandas库之DataFrame

    1 简介 DataFrame是Python中Pandas库中的一种数据结构,它类似excel,是一种二维表. 或许说它可能有点像matlab的矩阵,但是matlab的矩阵只能放数值型值(当然matla ...

随机推荐

  1. webpack笔记三 管理输出

    webpack笔记三 管理输出 增加src/print.js: export default function printMe() { console.log('I get called from p ...

  2. 原生ajax和jsonp

    封装方法: function ajax(options) { options = options || {}; options.type = (options.type || "GET&qu ...

  3. android 智能指针的学习先看邓凡平的书扫盲 再看前面两片博客提升

    android 智能指针的学习先看邓凡平的书扫盲 再看前面两片博客提升

  4. [BZOJ 2730][HNOI 2012] 矿场搭建

    2730: [HNOI2012]矿场搭建 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 2113  Solved: 979[Submit][Statu ...

  5. Java 集合框架(常用数据结构)

    早在Java 2中之前,Java就提供了特设类.比如:向量(Vector).栈(Stack).字典(Dictionary).哈希表(Hashtable)这些类(数据结构)用来存储和操作对象组.虽然这些 ...

  6. 1、关于python第三方工具操作xls和xlsx格式的excel文档选型的吐血经历

    首先,最近看了python的一本书,其中第7章是关于文章操作的,就计划把python操作excel,word,txt,xml,html,json等格式的文档做个总结,并实现一些功能,但是,第一步就要把 ...

  7. HTML的CoreText流畅度超过WebView。CoreText第三方框架DTCoreText的介绍

    为什么要用CoreText(富文本)来取代WebView去显示内容.主要的原因就WebView有很大的问题,性能,FPS,卡顿,与原生不搭.这些都是大问题. WebView的缺点 1.直接使用WebV ...

  8. swift 第一个IOS应用程序

    swift 出来也有一阵子了,一直没有时间来研究.简单的看了看.随手写几篇文章.特此声明:本博客纯属个人学习,有不足之处,属于正常,希望多多见谅. 第一个IOS应用程序开发 一.准备工作: (1)Ma ...

  9. vue2.* 环境搭建01

    搭建vue的开发环境: https://cn.vuejs.org/v2/guide/installation.html 1.必须要安装nodejs 2.搭建vue的开发环境 ,安装vue的脚手架工具 ...

  10. Freeze partial parameters while training

    1. requires_grad = False Set all parameters in the current model frozen: for p in self.parameters(): ...