floyd最短路
floyd可以在O(n3)的时间复杂度,O(n2)的空间复杂度下求解正权图中任意两点间的最短路长度.
本质是动态规划.
定义f[k][i][j]表示从i出发,途中只允许经过编号小于等于k的点时的最短路.(i,j可以大于k但i到j的路径上的其他点必须编号小于等于k).
转移时从第k层的DP数组f[k][][]求解第k+1层的DP数组f[k+1][i][j].
不妨将f[k+1][][]全部初始化为inf(一个足够大的值,可以是1000000,0x3f3f3f3f,或者其他的东西).
一条路径如果保证中转的点编号小于等于k,那么一定也满足经过的点的编号小于等于k+1.于是可以先将上一层的dp数组直接复制到第k+1层,f[k+1][i][j]=f[k][i][j].
接下来考虑经过了第k+1个点作为中转点的最短路.我们枚举(i,j),i!=k+1,j!=k+1,然后令f[k+1][i][j]=min(f[k+1][i][j],f[k][i][k+1]+f[k][k+1][j]).
直接这么写的空间复杂度是O(n3),接下来我们把空间压到O(n2).i,j这两维都是压不掉的,所以我们把k这一维压掉.
f[i][j]现在存的是f[k][i][j].接下来我们把f[i][j]进行更新使得它里面的数值变为f[k+1][i][j].
注意正权图的最短路中显然没有环,那么f[k][k+1][i]和f[k][k][i]的数值是相等的,f[k][i][k+1]和f[k+1][i][k+1]的数值也是相等的.(起点/终点当中有一个点是k+1,那么在中转点中允许经过k+1不会让这个最短路变短).也就是说,从f[k][][]转移到f[k+1][][]的时候,第k+1行和第k+1列都是不需要更新的.
而f[k+1][i][j]=min(f[k+1][i][j],f[k][i][k+1]+f[k][k+1][j]).用到的正是f[k][][]的第k+1行和第k+1列.
那么我们只需用f[i][j]的第k+1行第k+1列去更新其他行列的位置,就完成了f[k][i][j]到f[k+1][i][j]的转移.
于是我们得到了floyd算法的经典实现:
for(int k=1;k<=n;++k)//n为图的点数
for(int i=1;i<=n;++i)
for(int j=1;j<=n;++j)
f[i][j]=min(f[i][j],f[i][k]+f[k][j])
另一种实现:
for(int k=0;k<n;++k)
for(int i=0;i<n;++i)
for(int j=0;j<n;++j)
if(i!=k&&j!=k&&i!=j)f[i][j]=min(f[i][j],f[i][k]+f[k][j]);
不判断i,j,k是否相等也不会影响结果的正确性.当然i,j,k出现相等时这样的转移没有什么实际意义.
如何初始化?如果i到j有一条长度为w的边那么我们把f[i][j]赋值为w.如果i到j没有边我们将f[i][j]赋值为inf,认为从i到j有一条长度大到不影响结果的边(inf是一个对于数据范围来说足够大的值.当用int存储f[i][j]的时候inf常用0x3f3f3f3f.如果将inf取值为0x7f7f7f7f,将容易导致int加法溢出).
f[i][i]如何初始化?实际上,将f[i][i]初始化为任何值都不会影响floyd算法的正确性.为了统一性起见,一般把f[i][i]初始化为0.从i出发不需要走任何边就能到达i.
计算从i到j的长度等于最短路的路径条数g[i][j]?bzoj1491[NOI2007]社交网络
定义g[k][i][j]表示从i到j,允许经过编号小于等于k的点,长度等于f[k][i][j]的路径条数,转移的时候需要考虑f[k][i][j]的数值是否等于f[k+1][i][j]然后进行讨论.g[k][i][j]也可以变成二维数组g[i][j].
dp的顺序一定是从1到n吗?luogu2966[USACO09DEC]牛收费路径
实际上我们枚举k的顺序可以改变,例如随便取一个1到n的排列,定义f[k][i][j]为允许以排列中前k个点作为中转点时i到j的最短路.对于Tolls这个题就是按照点权顺序.
求有向图中的最小环?(一个边权和最小的回路)vijos1423最佳路线
环上至少有两个点.枚举i,j,用f[i][j]+f[j][i]更新答案即可.如果必须经过点1,那么用f[1][i]+f[i][1]更新答案.(必须经过点1的时候,其实只需在原图和所有边反向的图上各从1出发跑一遍dijkstra)
求无向图最小环?(不允许重复经过同一条边,例如从1走到2再从2走回1不是一个环)
不能直接套用有向图最小环算法.
由于无向图中的最小环至少包含三个点,所以我们可以O(n^3)枚举三个点:首先枚举环中编号最大的点k然后枚举和k相邻的两个点i,j(要求k,i之间,k,j之间必须有边).那么i和j之间怎样连接?因为我们需要让k成为编号最大的点,那么i和j之间的路径长度只能是f[k][i][j].因此我们在floyd枚举的过程中更新到f[k][i][j]时统计以k作为编号最大的点的最小环.
floyd最短路的更多相关文章
- Floyd最短路算法
Floyd最短路算法 ----转自啊哈磊[坐在马桶上看算法]算法6:只有五行的Floyd最短路算法 暑假,小哼准备去一些城市旅游.有些城市之间有公路,有些城市之间则没有,如下图.为了节省经费以及方便计 ...
- 【啊哈!算法】算法6:只有五行的Floyd最短路算法
暑假,小哼准备去一些城市旅游.有些城市之间有公路,有些城市之间则没有,如下图.为了节省经费以及方便计划旅程,小哼希望在出发之前知道任意两个城市之前的最短路程. 上图中有 ...
- 【坐在马桶上看算法】算法6:只有五行的Floyd最短路算法
暑假,小哼准备去一些城市旅游.有些城市之间有公路,有些城市之间则没有,如下图.为了节省经费以及方便计划旅程,小哼希望在出发之前知道任意两个城市之前的最短路程. 上图中有 ...
- BZOJ1491: [NOI2007]社交网络(Floyd 最短路计数)
Time Limit: 10 Sec Memory Limit: 64 MBSubmit: 2343 Solved: 1266[Submit][Status][Discuss] Descripti ...
- Wikioi 1020 孪生蜘蛛 Label:Floyd最短路
题目描述 Description 在G城保卫战中,超级孪生蜘蛛Phantom001和Phantom002作为第三层防卫被派往守护内城南端一带极为隐秘的通道. 根据防护中心的消息,敌方已经有一只特种飞蛾 ...
- FZU2090 旅行社的烦恼 巧妙floyd 最短路
分析:floyd看似很好理解,实际上是状态转移,具体的解释参照这里 http://www.cnblogs.com/chenying99/p/3932877.html 深入理解了floyd后,这个题就可 ...
- 只有五行的Floyd最短路算法
暑假,小哼准备去一些城市旅游.有些城市之间有公路,有些城市之间则没有,如下图.为了节省经费以及方便计划旅程,小哼希望在出发之前知道任意两个城市之前的最短路程. 上图中有 ...
- 仅仅有五行的Floyd最短路算法
暑假,小哼准备去一些城市旅游.有些城市之间有公路,有些城市之间则没有,例如以下图.为了节省经费以及方便计划旅程,小哼希望在出发之前知道随意两个城市之前的最短路程. 上图中有4个城市8条公路,公路上的数 ...
- BZOJ 1491 社交网络 Floyd 最短路的数目
题目链接: https://www.lydsy.com/JudgeOnline/problem.php?id=1491 题目大意: 见链接 思路: 直接用floyd算法求最短路,同时更新最短路的数目即 ...
随机推荐
- Hibernate各种主键生成策略与配置详解(转)
原文链接:http://www.cnblogs.com/hoobey/p/5508992.html 1.assigned 主键由外部程序负责生成,在 save() 之前必须指定一个.Hibernate ...
- python全栈开发-前方高能-生成器和生成器表达式
python_day_13 今日主要内容1. 生成器和生成器函数生成器的本质就是迭代器生成器的三种创建办法: 1.通过生成器函数 2.通过生成器表达式创建生成器 3.通过数据转换 生成器函数: 函数中 ...
- java 通过内存映射文件来提高IO读取文件性能
MappedByteBuffer out = new RandomAccessFile("src/demo20/test.dat", "rw"). getCha ...
- 音频分析框架pyAudioAnalysis文档
“ pyAudioAnalysis是一个非常好用且强大的音频分析开源工具,能实现音频的特征提取.分类和回归模型的训练和执行,以及其他一些实用的功能.此外,本文档并非直译,也有部分比较简略,可以结合源码 ...
- Numpy入门笔记第二天
# 数组的组合 import numpy as np arr1 = np.arange(5) arr2 = np.arange(3) print arr1 print arr2 [0 1 2 3 4] ...
- 常用DOS指令备忘
1.删除整个目录,包括空目录 rd D:\管理\2012新同学练习\.svn /s/q /s 删除当前目录及子目录 /q 不询问直接删除 2.拷贝目录树 xcopy D:\管理\2012新同学练习 E ...
- Python20-Day01
简述编译型与解释型语言的区别,且分别列出你知道的哪些语言属于编译型,哪些属于解释 编译型语言是一种以编译器来实现的编程语言,优缺点:执行速度快,调试麻烦 编译型语言:Java,Go,C,C++ 解释性 ...
- spark-local-运行异常-Could not locate executable null\bin\winutils.exe in the Hadoop binaries
windows下-local模式-运行spark: 1.下载winutils的windows版本 GitHub上,有人提供了winutils的windows的版本,项目地址是:https://gith ...
- oracle时间转换查询
查询oracle 数据库时要查询某一字段的最大时间或者最小时间,因为oracle的时间点 精确到毫秒 甚至更高精度级别 根据字段来转换成对应的时间格式: SELECT TO_CHAR(MAX(crea ...
- Visiting a Friend(思维)
Description Pig is visiting a friend. Pig's house is located at point 0, and his friend's house is l ...