A Magic Lamp HDU - 3183(RMQ返回下标)
原文地址:https://blog.csdn.net/acdreamers/article/details/8692384
题意:
对于一个序列A[1...N],一共N个数,除去M个数使剩下的数组成的整数最小。
也就是说在A[1...N]中顺次选取N-M个数,使值最小。
本题很有技巧性,一开始我总是想不明白,后来在纸上画了一下,大概明白了是怎么回事。
它主要是基于以下事实:
对于序列A[1...N],选取N-M个数,使组成的值最小,而且顺序不能交换,既然要选取N-M个,那么可以容易知道这N-M位数的第一位一定在数组A中的区间
[1,M+1]中出现,为什么是这样呢?
我们可以这样来模拟一下:假设A数组就只有6个数,分别是A[1],A[2],A[3],A[4],A[5],A[6],我们去掉M=2个数,使形成的值最小。
那么我们此时的N=6,M=2,N-M=4
则我们说形成的4位数的第一位一定在区间[1,3]中出现,因为如果区间范围再大点,比如[1,4],这样就不科学了,因为第一位一定不会是A[4],更不会是
A[5],A[6],我们假设可以是A[4],那么后面只有A[5],A[6]两位数了,这样的话最多只可能形成3位数,绝对不能形成N-M=4位了。
当然到了这里,我们就可以这样做了,第一位可以在区间[1,M+1]里面找,假设第一位在位置x,因为第二位肯定在第一位的后面,所以第二位一定存在于
区间[x+1,M+2],为什么是M+2,因为第一位已经确定了,现在只需要确定N-M-1位了,所以区间就可以向后增加1,一直这样循环下去,就可以找到了。
#include <iostream>
#include <cstdio>
#include <sstream>
#include <cstring>
#include <map>
#include <set>
#include <vector>
#include <stack>
#include <queue>
#include <algorithm>
#include <cmath>
#define rap(i, a, n) for(int i=a; i<=n; i++)
#define rep(i, a, n) for(int i=a; i<n; i++)
#define lap(i, a, n) for(int i=n; i>=a; i--)
#define lep(i, a, n) for(int i=n; i>a; i--)
#define MOD 2018
#define LL long long
#define ULL unsigned long long
#define Pair pair<int, int>
#define mem(a, b) memset(a, b, sizeof(a))
#define _ ios_base::sync_with_stdio(0),cin.tie(0)
//freopen("1.txt", "r", stdin);
using namespace std;
const int maxn = , INF = 0x7fffffff;
int d[maxn][];
char a[maxn], num[maxn];
int n, m; int minn(int i, int j) //核心
{
return a[i] <= a[j] ? i : j;
} int rmq(int l, int r)
{
int k = ;
while((<<(k+)) <= r-l+) k++;
return minn(d[l][k], d[r-(<<k)+][k]);
} int main()
{
while(~scanf("%s%d", a, &m))
{
int len = strlen(a);
n = len;
m = len - m;
for(int i=; i<n; i++) //下标的序列
d[i][] = i;
for(int j=; (<<j) <= n; j++)
for(int i=; i+(<<j)- < n; i++)
d[i][j] = minn(d[i][j-], d[i+(<<(j-))][j-]);
int i, j;
i = j = ;
while(m--)
{
i = rmq(i, len - m - ); //while中m已经--了所以例如第一次就相当于0到m去找第一位
num[j++] = a[i++];
}
for(i=; i<j; i++)
if(num[i] != '') break;
if(i == j)
{
puts("");
continue;
}
while(i < j)
{
printf("%c", num[i]);
i++;
}
printf("\n");
} return ;
}
A Magic Lamp HDU - 3183(RMQ返回下标)的更多相关文章
- A Magic Lamp HDU - 3183 (逆向贪心/RMQ)
Kiki likes traveling. One day she finds a magic lamp, unfortunately the genie in the lamp is not so ...
- A Magic Lamp -- hdu -- 3183
http://acm.hdu.edu.cn/showproblem.php?pid=3183 A Magic Lamp Time Limit: 2000/1000 MS (Java/Others) ...
- hdu 3183 rmq+鸽巢原理
题目大意: 给你一个数字字符串序列,给你要求删掉的数字个数m,删掉m个数使的剩下的数字字符串的之最小.并输出这个数字: 基本思路; 这题解法有很多,贪心,rmq都可以,这里选择rmq,因为很久没有写r ...
- hdu 3183 A Magic Lamp RMQ ST 坐标最小值
hdu 3183 A Magic Lamp RMQ ST 坐标最小值 题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3183 题目大意: 从给定的串中挑 ...
- HDU 3183 - A Magic Lamp - [RMQ][ST算法]
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3183 Problem DescriptionKiki likes traveling. One day ...
- hdu 3183 A Magic Lamp(RMQ)
题目链接:hdu 3183 A Magic Lamp 题目大意:给定一个字符串,然后最多删除K个.使得剩下的组成的数值最小. 解题思路:问题等价与取N-M个数.每次取的时候保证后面能取的个数足够,而且 ...
- hdu 3183 A Magic Lamp rmq或者暴力
A Magic Lamp Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Pro ...
- hdu 3183 A Magic Lamp(RMQ)
A Magic Lamp Time Limi ...
- HDU 3183 A Magic Lamp(RMQ问题, ST算法)
原题目 A Magic Lamp Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) ...
随机推荐
- svn 安装 配置及同步
1.环境centos 2.安装svn #yum -y install subversion 3 查看版本 #svnserve --version 4 建立版本库目录 #mkdir /data/svnd ...
- [转]WIN2008 IIS7的日期格式
最近项目升级服务器从32位升级到64位的WIN2008,日期显示格式非我们所期望的yyyy-M-d格式,原以为修改控制面板的日期格式即可,可是不行. 修改注册表问题解决. 修改方法: 运行注册表编辑器 ...
- Python爬虫与反爬虫(7)
[Python基础知识]Python爬虫与反爬虫(7) 很久没有补爬虫了,相信在白蚁二周年庆的活动大厅比赛中遇到了关于反爬虫的问题吧 这节我会做个基本分享. 从功能上来讲,爬虫一般分为数据采集,处理, ...
- Jmeter接口测试(三)接口测试实践
Jmeter 脚本编写一般分五个步骤: 1. 添加线程组 2. 添加 http 请求 3. 在 http 请求中写入接入 url.路径.请求方式和参数 4. 添加查看结果树 5. 调用接口.查看返回值 ...
- HDU 6438
Problem Description The Power Cube is used as a stash of Exotic Power. There are n cities numbered 1 ...
- Zabbix_agnet部署
原文发表于cu:2016-05-18 参考文档: zabbix监控linux主机:http://www.osyunwei.com/archives/8035.html 一.环境 Server:基于C ...
- 5 种使用 Python 代码轻松实现数据可视化的方法
数据可视化是数据科学家工作中的重要组成部分.在项目的早期阶段,你通常会进行探索性数据分析(Exploratory Data Analysis,EDA)以获取对数据的一些理解.创建可视化方法确实有助于使 ...
- Python 招聘信息爬取及可视化
自学python的大四狗发现校招招python的屈指可数,全是C++.Java.PHP,但看了下社招岗位还是有的.于是为了更加确定有多少可能找到工作,就用python写了个爬虫爬取招聘信息,数据处理, ...
- ES6的新特性(19)——Module 的语法
Module 的语法 概述 历史上,JavaScript 一直没有模块(module)体系,无法将一个大程序拆分成互相依赖的小文件,再用简单的方法拼装起来.其他语言都有这项功能,比如 Ruby 的re ...
- 关于requestanimationframe
首先字面理解,请求动画框架, 用法: var nextFrame = (function() { return window.requestAnimationFrame || window.webki ...