P1351 联合权值

想刷道水题还交了3次.....丢人

(1.没想到有两个点都是儿子的状况 2.到处乱%(大雾))

先dfs一遍处理出父亲$fa[x]$

蓝后再一遍dfs,搞搞就出来了。

#include<iostream>
#include<cstdio>
#include<cstring>
#define re register
using namespace std;
const int p=;
int max(int &a,int &b){return a>b?a:b;}
#define N 200002
int n,fa[N],val[N],f1[N],f2[N];
int cnt,hd[N],nxt[N<<],ed[N],poi[N<<];
void adde(int x,int y){
nxt[ed[x]]=++cnt; hd[x]=hd[x]?hd[x]:cnt;
ed[x]=cnt; poi[cnt]=y;
}
void dfs1(int x,int ffa){//处理fa数组
fa[x]=ffa;
for(int i=hd[x];i;i=nxt[i])
if(poi[i]!=ffa)
dfs1(poi[i],x);
}
void dfs2(int x){
int mxd=,tot=;
for(int i=hd[x];i;i=nxt[i]){
int to=poi[i];
if(to==fa[x]) continue;
f1[x]=max(f1[x],val[to]*mxd);
f2[x]=1ll*(f2[x]+val[to]*tot)%p;
mxd=max(mxd,val[to]);//以上为构成联合权值的2个点都是儿子的情况
tot=(tot+val[to])%p;
dfs2(to);
f1[x]=max(f1[x],f1[to]);
f2[x]=1ll*(f2[x]+f2[to])%p;
}
int g=fa[fa[x]],v=val[x]*val[g];//点x和x的爷爷构成联合权值
f1[g]=max(f1[g],v);
f2[g]=1ll*(f2[g]+v)%p;
}
int main(){
scanf("%d",&n); int q1,q2;
for(int i=;i<n;++i){
scanf("%d%d",&q1,&q2);
adde(q1,q2); adde(q2,q1);
}
for(int i=;i<=n;++i) scanf("%d",&val[i]);
dfs1(,); dfs2(); f2[]=1ll*f2[]*%p;//记得*2
printf("%d %d",f1[],f2[]);
return ;
}

P1351 联合权值(树形dp)的更多相关文章

  1. 洛谷P1351 联合权值(树形dp)

    题意 题目链接 Sol 一道很简单的树形dp,然而被我写的这么长 分别记录下距离为\(1/2\)的点数,权值和,最大值.以及相邻儿子之间的贡献. 树形dp一波.. #include<bits/s ...

  2. 洛谷 P1351 联合权值 —— 树形DP

    题目:https://www.luogu.org/problemnew/show/P1351 树形DP,别忘了子树之间的情况(拐一下距离为2). 代码如下: #include<iostream& ...

  3. 洛谷 1351 联合权值——树形dp

    题目:https://www.luogu.org/problemnew/show/P1351 对拍了一下,才发现自己漏掉了那种拐弯的情况. #include<iostream> #incl ...

  4. 洛谷 P1351 联合权值 题解

    P1351 联合权值 题目描述 无向连通图 \(G\) 有 \(n\) 个点,\(n-1\) 条边.点从 \(1\) 到 \(n\) 依次编号,编号为 \(i\) 的点的权值为 \(W_i\)​,每条 ...

  5. P1351 联合权值[鬼畜解法]

    题目描述 无向连通图 G 有 n 个点,n−1 条边.点从 1 到 n 依次编号,编号为 i 的点的权值为 Wi​,每条边的长度均为 1.图上两点 (u,v) 的距离定义为 u 点到 v 点的最短距离 ...

  6. [NOIP2014] 提高组 洛谷P1351 联合权值

    题目描述 无向连通图G 有n 个点,n - 1 条边.点从1 到n 依次编号,编号为 i 的点的权值为W i ,每条边的长度均为1 .图上两点( u , v ) 的距离定义为u 点到v 点的最短距离. ...

  7. 【NOIP2014】联合权值 树上dp

    题目描述 Description 无向连通图G 有n 个点,n - 1 条边.点从1 到n 依次编号,编号为 i 的点的权值为W i   ,每条边的长度均为1 .图上两点( u ,  v ) 的距离定 ...

  8. luogu P1351 联合权值

    题目描述 无向连通图G 有n 个点,n - 1 条边.点从1 到n 依次编号,编号为 i 的点的权值为W i ,每条边的长度均为1 .图上两点( u , v ) 的距离定义为u 点到v 点的最短距离. ...

  9. 洛谷 P1351 联合权值

    题目描述 无向连通图G 有n 个点,n - 1 条边.点从1 到n 依次编号,编号为 i 的点的权值为W i ,每条边的长度均为1 .图上两点( u , v ) 的距离定义为u 点到v 点的最短距离. ...

随机推荐

  1. eclispe创建gradle项目

    1.打开eclipse,选择Help——>install from Catalog,安装如图所示的gradle 2.右击空白处,new——>other——>Gradle——>G ...

  2. java基础---->多线程之Runnable(一)

    java线程的创建有两种方式,这里我们通过简单的实例来学习一下.一切都明明白白,但我们仍匆匆错过,因为你相信命运,因为我怀疑生活. java中多线程的创建 一.通过继承Thread类来创建多线程 pu ...

  3. 从一个多项目Web工程看Eclipse如何导入Gradle项目

    这里再次说一下为什么我们需要熟悉Gradle构建工具,主要原因就是很多开源项目现在都在改用Gradle作为构建工具.一部分的github上的示例代码也在用Gradle构建,如果还是只能用maven,那 ...

  4. (转)梯度下降法及其Python实现

    梯度下降法(gradient descent),又名最速下降法(steepest descent)是求解无约束最优化问题最常用的方法,它是一种迭代方法,每一步主要的操作是求解目标函数的梯度向量,将当前 ...

  5. JS--页面返回/跳转/刷新(转载)

    原文: Javascript 返回上一页1. Javascript 返回上一页 history.go(-1), 返回两个页面: history.go(-2); 2. history.back(). 3 ...

  6. having使用的时机

    where 子句的作用是在对查询结果进行分组前,将不符合where条件的行去掉,即在分组之前过滤数据,条件中不能包含聚组函数,使用where条件显示特定的行. having 子句的作用是筛选满足条件的 ...

  7. 170719、springboot编程之异步调用@Async

    1.在pom.xml中增加依赖 <dependency> <groupId>org.springframework.boot</groupId> <artif ...

  8. ubuntu下安装meshlab

    PPA 安装,打开终端,输入以下命令: sudo add-apt-repository ppa:zarquon42/meshlab sudo apt-get update sudo apt-get i ...

  9. c# devExpress控件 comboBoxEdit,gridControl1,labelcontrol

    一.comboBoxEdit:下拉框 属性 添加项:Properties->items 二.gridControl gridControl与Gridview的区别:前者是容器,后者为视图 2)g ...

  10. 如何在不改SQL的情况下优化数据库

    主题简介 在数据库运维中我们会遇到各种各样的问题,这些问题的根源可能很明显,也可能被某种表象掩盖而使我们认不清.所以运维面临的两大问题就是,第一我们没有看清本质,第二应用不允许修改.那么我们如何解决这 ...