Protocols, Generics, and Existential Containers — Wait What?
For the longest time now, I thought that the two functions above were the same.
But in actuality, while they may do exactly the same thing between open and closed braces (which in this case is nothing at all), what’s going on behind the scenes is different. To understand what’s going on we’ll first have to talk about the Container.
The Container
Revealed in more detail in Session 416 of WWDC 2016, the container is a wrapper around parameters adhering to a protocol and is used non-generically. The container functions as a box of fixed size (we’ll get back to this in a sec), thus allowing all adherers of a protocol to be of the same size, which is necessary for them to be used interchangeably.
var vehicles: [Drivable]
The fixed size of the container also allows us to store classes/structs that adhere to a protocol in an array of type protocol (as seen above), since the elements are now of the same size and can be stored in contiguous memory.
So what goes into the container?
The container is more or less a box with 5 rows:
1. payload_data_0 = 0x0000000000000004,
2. payload_data_1 = 0x0000000000000000,
3. payload_data_2 = 0x0000000000000000,
4. instance_type = 0x000000010d6dc408 ExistentialContainers`type
metadata for ExistentialContainers.Car,
5. protocol_witness_0 = 0x000000010d6dc1c0
ExistentialContainers`protocol witness table for
ExistentialContainers.Car : ExistentialContainers.Drivable
in ExistentialContainers
The first 3 rows labeled payload_data 0–3, respectively, represent the Value Buffer. The value buffer holds 3 words, each word is a chunk of memory representing 8 bytes. If your struct has just 3 properties and each property has a size within that 8 byte range, then the values are offloaded to the Value Buffer.
If your struct has more than 3 properties or has properties not within the 8 byte range, say a Character (9 bytes) or a String (24 bytes), then the values are stored in a separate value table allocated on the heap. In this case payload_data_0 would hold a pointer to the value table on the heap and the other two payload variables would remain uninitialized. This indirection is what maintains the sizing of the Container.
For clarity here are a few structs, adhering to the Drivable protocol, and their respective payloads:
Structs adhering to the Drivable protocol
car =
payload_data_0 = 0x0000000000000004,
payload_data_1 = 0x0000000000000000,
payload_data_2 = 0x0000000000000000,
instance_type = 0x000000010b50e410
ExistentialContainers`type metadata for
ExistentialContainers.Car,
protocol_witness_0 = 0x000000010b50e1c8
ExistentialContainers`protocol witness table for
ExistentialContainers.Car: ExistentialContainers.Drivable
in ExistentialContainers)
motorcycle =
payload_data_0 = 0x0000608000036820,
payload_data_1 = 0x0000000000000000,
payload_data_2 = 0x0000000000000000,
instance_type = 0x000000010b50e4d8
ExistentialContainers`type metadata for
ExistentialContainers.Motorcycle,
protocol_witness_0 = 0x000000010b50e1d8
ExistentialContainers`protocol witness table for
ExistentialContainers.Motorcycle:
ExistentialContainers.Drivable in ExistentialContainers
bus =
payload_data_0 = 0x00006000000364a0,
payload_data_1 = 0x0000000000000000,
payload_data_2 = 0x0000000000000000,
instance_type = 0x000000010b50e5a8
ExistentialContainers`type metadata for
ExistentialContainers.Bus,
protocol_witness_0 = 0x000000010b50e1e8
ExistentialContainers`protocol witness table for
ExistentialContainers.Bus: ExistentialContainers.Drivable
in ExistentialContainers
As you can see, Car has the expected payload, but Motorcycle has only one payload entry, even though it has two properties. As mentioned before, String variables are 24 bytes, so the licensePlate property causes all of the properties to be stored on the heap, thus having only one payload entry — the pointer to the values on the heap. Bus has 4 properties, so as expected, there is just one payload entry.
Now for the final two rows.
The instance_type variable (4th row) is a pointer to the Value Witness Table (VWT), which is another table structure that contains Type specific information on how to Allocate, Copy, and Destroy the value represented by the container.
The protocol_witness_0 variable (5th row) holds a pointer to the Protocol Witness Table (PWT). The PWT is another table structure that holds references to the implementation of protocol functions defined by an object adhering to the protocol. The PWT is the reason why if we called drive() on a Drivable that happened to be a car object, it knows to execute the Car objects drive function and not, say, the Bus’s implementation.
Function Parameters
So what does all of this have to do with the original question? What’s the difference between our two functions?
Functions in question
Well, there are actually quite a few things — how they’re dispatched, how local variables are instantiated, accessing of associated types for generic return types, compiler optimizations, dynamic behavior … the list goes on.
But for now we’ll focus on how instantiation occurs and the accessing of associated types. Links will be provide below for more details on most of these.
On to how local variable instantiation occurs: The protocol based function on line 6 receives its input in the form of an container since it must support multiple types. A local variable, transportation, is then created using the VWT and PWT of the container.
On the other hand, the generic based function will receive its input without the container, despite also supporting multiple Drivable types. Why is that?
Instead of passing an container to the generic function so that the local variable can be instantiated, the generic function becomes specialized at compile time, aware of type specific information generated at the function’s call site. So, suppose a Car object were passed into startTraveling(), swift will generate a Car specific version of the function, say:
func startTravelingWithCar(transportation: Car) { }
Behind the scenes the function also receives the car’s PWT and VWT, giving the function the necessary information to be able to set up a value buffer if necessary and determine the car object’s protocol specific function implementation of drive(). This newly generated function is now type specific, giving us access to any associated types of the Car object and all of this type information is determined at compile time — which is part of the reason why we can have an associated type be the return type of a generic function, but can’t do the same for protocol based functions.
protocol Returnable {
associateType ReturnType
}
//This will compile
func returnTheType<T: Returnable>(object: T) -> T.ReturnType { } ✅
//This won't compile
func returnTheType(object: Returnable) -> object.ReturnType { } ❌
However protocols based functions aren’t bad, despite the fact that we can’t utilize associated types as return types. Protocol based functions, unlike their generic counterparts, offer a higher degree of dynamism and flexability at runtime. But, this post is long enough as is
Protocols, Generics, and Existential Containers — Wait What?的更多相关文章
- Which dispatch method would be used in Swift?-Existential Container
In this example: protocol MyProtocol { func testFuncA() } extension MyProtocol { func testFuncA() { ...
- swift protocol 见证容器 虚函数表 与 动态派发
一.测试代码: //protocol DiceGameDelegate: AnyObject { //} // //@objc protocol OcProtocol{ // @objc fun ...
- 【基本功】深入剖析Swift性能优化
简介 2014年,苹果公司在WWDC上发布Swift这一新的编程语言.经过几年的发展,Swift已经成为iOS开发语言的“中流砥柱”,Swift提供了非常灵活的高级别特性,例如协议.闭包.泛型等,并且 ...
- 深入剖析Swift性能优化
简介 2014年,苹果公司在WWDC上发布Swift这一新的编程语言.经过几年的发展,Swift已经成为iOS开发语言的“中流砥柱”,Swift提供了非常灵活的高级别特性,例如协议.闭包.泛型等,并且 ...
- Thinking in Java——笔记(11)
Holding Your Objects In general, your programs will always be creating new objects based on some cri ...
- Which dispatch method would be used in Swift?
In this example: protocol MyProtocol { func testFuncA() } extension MyProtocol { func testFuncA() { ...
- Thinking in Java,Fourth Edition(Java 编程思想,第四版)学习笔记(十一)之Holding Your Objects
To solve the general programming problem, you need to create any number of objects, anytime, anywher ...
- Effective Java 29 Consider typesafe heterogeneous containers
When a class literal is passed among methods to communicate both compile-time and runtime type infor ...
- thinking in java Generics Latent typing
The beginning of this chapter introduced the idea of writing code that can be applied as generally a ...
随机推荐
- ashx 绝对路径得到物理路径
//先得到模板页所在的路径 string phyPath = context.Server.MapPath("/p02style.html"); //得到模板的所有内容 strin ...
- 【8】memcached实例
一.memcached环境搭建 1.下载后解压到D:\memcached(下载地址:memcached-win64下载地址) 2.安装到windows服务,打开cmd命令行,进入memcached目录 ...
- WPF月视图控件
简介 在做一个应用时,需要做成日历月视图的形式.自己做较麻烦,于是上网找找看,在CodeProject上发现了这个Quick and Simple WPF Month-view Calendar,可是 ...
- Hbase配置指南
注意点 Hbase 需要zookeeper. Hbase 需要在各个节点的机器上配置. 集群中的启动顺序是Hadoop.zookeeper 和Hbase 搭建步骤 解压安装文件并配置环境变量. exp ...
- 从Eclipse切换到IDEA工具,哎~真香!
从Eclipse切换到IDEA工具,哎~真香!(图) 个人观点:IDEA工具用了就回不去了!!!对比很多人写,我就不赘述了.我在这里主要介绍一下IDEA工具的一些使用上的技巧,毕竟我开始学习java的 ...
- [LeetCode]Longest Substring Without Repeating Characters题解
Longest Substring Without Repeating Characters: Given a string, find the length of the longest subst ...
- Bzoj2780: [Spoj]8093 Sevenk Love Oimaster
题目 传送门 Sol 就是广义\(sam\) 然后记录下每个状态属于哪些串,开\(set\)维护 \(parent\)树上启发式合并一下就好了 # include <bits/stdc++.h& ...
- 最齐全的vue公共函数给你们放出来啦
import Vue from 'vue' /* 配置参数 */Vue.prototype.winH = document.documentElement.clientHeight; Vue.prot ...
- 关系型数据库——主键&外键的
一.什么是主键.外键: 关系型数据库中的一条记录中有若干个属性,若其中某一个属性组(注意是组)能唯一标识一条记录,该属性组就可以成为一个主键 比如 学生表(学号,姓名,性别,班级) 其中每个学 ...
- 转:问题解决:The project cannot be built until build path errors are resolved
转自:http://blog.csdn.net/marty_zhu/article/details/2566299 今天在eclipse里遇到这个问题,之前也遇到过,不过,通过clean一下项目,或者 ...