hdu5015矩阵快速幂
参考博客:http://blog.csdn.net/rowanhaoa/article/details/39343769
反正递推关系式推了一个多小时没搞出来。。。太弱了
真是愧对数学系这一专业了。。。。
转移矩阵就是这个:
10 0 0 0 0 1
10 1 0 0 0 1
10 1 1 0 0 1
10 1 1 1 0 1
10 1 1 1 1 1
0 0 0 0 0 1
#include<map>
#include<set>
#include<cmath>
#include<queue>
#include<stack>
#include<vector>
#include<cstdio>
#include<iomanip>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<algorithm>
#define pi acos(-1)
#define ll long long
#define mod 10000007
#define ls l,m,rt<<1
#define rs m+1,r,rt<<1|1 using namespace std; const double g=10.0,eps=1e-;
const int N=+,maxn=<<+,inf=0x3f3f3f3f; struct Node{
ll row,col;
ll a[N][N];
};
Node mul(Node x,Node y)
{
Node ans;
ans.row=x.row,ans.col=y.col;
memset(ans.a,,sizeof ans.a);
for(int i=;i<x.row;i++)
for(int j=;j<x.col;j++)
for(int k=;k<y.col;k++)
ans.a[i][k]=(ans.a[i][k]+x.a[i][j]*y.a[j][k]+mod)%mod;
return ans;
}
Node quick_mul(Node x,ll n)
{
Node ans;
ans.row=x.row,ans.col=x.col;
memset(ans.a,,sizeof ans.a);
for(int i=;i<ans.col;i++)ans.a[i][i]=;
while(n){
if(n&)ans=mul(ans,x);
x=mul(x,x);
n/=;
}
return ans;
}
int main()
{ ios::sync_with_stdio(false);
cin.tie();
// cout<<setiosflags(ios::fixed)<<setprecision(2);
int n,m;
while(cin>>n>>m){
Node A;
A.row=n+,A.col=n+;
memset(A.a,,sizeof A.a);
for(int i=;i<n+;i++)
for(int j=;j<=i;j++)
A.a[i][j]=;
for(int i=;i<n+;i++)
A.a[i][]=,A.a[i][n+]=;
for(int i=;i<n+;i++)A.a[n+][i]=;
/* for(int i=0;i<A.row;i++)
{
for(int j=0;j<A.col;j++)
cout<<A.a[i][j]<<" ";
cout<<endl;
}*/
Node B;
B.row=n+,B.col=,B.a[][]=;
for(int i=;i<=n;i++)cin>>B.a[i][];
B.a[n+][]=;
B=mul(quick_mul(A,m),B);
cout<<B.a[n][]<<endl;
}
return ;
}
hdu5015矩阵快速幂的更多相关文章
- hdu5015 矩阵快速幂233(好题)
题意: 给你一个(n+1)*(m+1)的矩阵mat,然后给你mat[0][1] = 233 ,mat[0][2] = 2333,mat[0][3] = 23333...,然后输入mat[1 ...
- 矩阵快速幂 HDU 4565 So Easy!(简单?才怪!)
题目链接 题意: 思路: 直接拿别人的图,自己写太麻烦了~ 然后就可以用矩阵快速幂套模板求递推式啦~ 另外: 这题想不到或者不会矩阵快速幂,根本没法做,还是2013年长沙邀请赛水题,也是2008年Go ...
- 51nod 算法马拉松18 B 非010串 矩阵快速幂
非010串 基准时间限制:1 秒 空间限制:131072 KB 分值: 80 如果一个01字符串满足不存在010这样的子串,那么称它为非010串. 求长度为n的非010串的个数.(对1e9+7取模) ...
- 51nod 1113 矩阵快速幂
题目链接:51nod 1113 矩阵快速幂 模板题,学习下. #include<cstdio> #include<cmath> #include<cstring> ...
- 【66测试20161115】【树】【DP_LIS】【SPFA】【同余最短路】【递推】【矩阵快速幂】
还有3天,今天考试又崩了.状态还没有调整过来... 第一题:小L的二叉树 勤奋又善于思考的小L接触了信息学竞赛,开始的学习十分顺利.但是,小L对数据结构的掌握实在十分渣渣.所以,小L当时卡在了二叉树. ...
- HDU5950(矩阵快速幂)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5950 题意:f(n) = f(n-1) + 2*f(n-2) + n^4,f(1) = a , f(2 ...
- 51nod 1126 矩阵快速幂 水
有一个序列是这样定义的:f(1) = 1, f(2) = 1, f(n) = (A * f(n - 1) + B * f(n - 2)) mod 7. 给出A,B和N,求f(n)的值. Input 输 ...
- hdu2604(递推,矩阵快速幂)
题目链接:hdu2604 这题重要的递推公式,找到公式就很easy了(这道题和hdu1757(题解)类似,只是这道题需要自己推公式) 可以直接找规律,推出递推公式,也有另一种找递推公式的方法:(PS: ...
- 矩阵乘法&矩阵快速幂&矩阵快速幂解决线性递推式
矩阵乘法,顾名思义矩阵与矩阵相乘, 两矩阵可相乘的前提:第一个矩阵的行与第二个矩阵的列相等 相乘原则: a b * A B = a*A+b*C a*c+b*D c d ...
随机推荐
- fastBoot使用
fastBoot使用 作者:李老师,华清远见嵌入式学院讲师. 1.1. 使用Fastboot方式烧写 在安卓手机中Fastboot是一种比Recovery更底层的刷机模式.Fastboot是一种线刷, ...
- boost.sha1
#include <boost/uuid/sha1.hpp> #include <iostream> /* @brief SHA1摘要算法:一种很重要的密码学算法,可将任意长度 ...
- 【Python】Python 读取csv的某行或某列数据
Python 读取csv的某行 转载 2016年08月30日 21:01:44 标签: python / csv / 数据 站长用Python写了一个可以提取csv任一列的代码,欢迎使用.Gith ...
- DBA-常用到的动态视图分析语句
--语句1:获取前20逻辑读取次数或逻辑写入次数或CPU 时间 ), ((CASE qs.statement_end_offset THEN DATALENGTH(qt.TEXT) ELSE qs.s ...
- 给所有开发者的React Native详细入门指南
建议先下载好资料后,再阅读本文.demo代码和资料下载 目录 一.前言 二.回答一些问题 1.为什么写此教程 2.本文适合哪些人看 3.如何使用本教程 4.需要先学习JavaScript.HTML.C ...
- PAT 1138 Postorder Traversal [比较]
1138 Postorder Traversal (25 分) Suppose that all the keys in a binary tree are distinct positive int ...
- 1107 Social Clusters[并查集][难]
1107 Social Clusters(30 分) When register on a social network, you are always asked to specify your h ...
- js判断浏览器的类型和获得浏览器的版本
<!DOCTYPE html><html> <head> <meta charset="UTF-8"> ...
- tp基础补充
ThinkPHP php框架 真实项目开发步骤: 多人同时开发项目,协作开发项目.分工合理.效率有提高(代码风格不一样.分工不好) 测试阶段 上线运行 对项目进行维护.修改.升级(单个人维护项目,十分 ...
- C#——JSON操作类简单封装(DataContractJsonSerializer)
Framework版本:.Net Framework 4 使用DataContractJsonSerializer时,实体请使用注解,格式如下 1.实体使用注解,并且提供get和set的public访 ...