题面 传送门 题解 不知道伯努利数是什么的可以先去看看这篇文章 多项式求逆预处理伯努利数就行 因为这里模数感人,所以得用\(MTT\) //minamoto #include<bits/stdc++.h> #define R register #define ll long long #define fp(i,a,b) for(R int i=(a),I=(b)+1;i<I;++i) #define fd(i,a,b) for(R int i=(a),I=(b)-1;i>I;--i…
[题意]给定n,求Σi=0~nΣj=1~i s(i,j)*2^j*j!,n<=10^5. [算法]生成函数+排列组合+多项式求逆 [题解]参考: [BZOJ4555][Tjoi2016&Heoi2016]求和-NTT-多项式求逆 $ans=\sum_{i=0}^{n}\sum_{j=0}^{i}s(i,j)*2^j*j!$ 令$g(n)=\sum_{j=0}^{n}s(n,j)*2^j*j!$ 则ans是Σg(i),只要计算出g(i)的生成函数就可以统计答案. g(n)可以理解为将n个数划分…
不想多说了,看网上的题解吧,我大概说下思路. 首先考察Stirling的意义,然后求出递推式,变成卷积的形式. 然后发现贡献是一定的,我们可以分治+NTT. 也可以直接求逆(我不会啊啊啊啊啊) #include <map> #include <cmath> #include <queue> #include <cstdio> #include <cstring> #include <iostream> #include <alg…
T(n) = n^k,S(n) = T(1) + T(2) + ...... T(n).给出n和k,求S(n).   例如k = 2,n = 5,S(n) = 1^2 + 2^2 + 3^2 + 4^2 + 5^2 = 55. 由于结果很大,输出S(n) Mod 1000000007的结果即可. Input 第1行:一个数T,表示后面用作输入测试的数的数量.(1 <= T <= 500) 第2 - T + 1行:每行2个数,N, K中间用空格分割.(1 <= N <= 10^18,…
题面 传送门 题解 如果您不知道伯努利数是什么可以去看看这篇文章 首先我们把自然数幂和化成伯努利数的形式 \[\sum_{i=1}^{n-1}i^k={1\over k+1}\sum_{i=0}^k{k+1\choose i}B_in^{k+1-i}\] 然后接下来就是推倒了 \[ \begin{aligned} Ans &=\sum_{k=0}^na_kS_k(x)\\ &=\sum_{k=0}^na_k\left(x^k+{1\over k+1}\sum_{i=0}^k{k+1\cho…
1258 序列求和 V4 题意:求\(S_m(n) = \sum_{i=1}^n i^m \mod 10^9+7\),多组数据,\(T \le 500, n \le 10^{18}, k \le 50000\) 等幂求和 多项式求逆元\(O(mlogm)\)预处理伯努利数,然后可以\(O(m)\)回答 因为是任意模数,所以要用拆系数fft 拆系数fft+多项式求逆元,写的爽死了 具体内容可能会写学习笔记 注意: 多项式求逆元里拆系数,不能只更新 .x= ,这样的话y还保留以前的值就错了 因为使用…
[51Nod1258]序列求和V4(FFT) 题面 51Nod 多组数据,求: \[Ans=\sum_{i=1}^ni^k,n\le 10^{18},k\le50000\] 题解 预处理伯努利数,时间复杂度\(O(nlogn)\) 然后利用伯努利数求和即可. \[\sum_{i=1}^n i^k=\frac{1}{k+1}\sum_{i=0}^kB_iC_{k+1}^i(n+1)^{k+1-i}\] 预处理需要多项式求逆,因为模数不太好,所以需要\(MTT\) #include<iostream…
4555: [Tjoi2016&Heoi2016]求和 题意:求\[ \sum_{i=0}^n \sum_{j=0}^i S(i,j)\cdot 2^j\cdot j! \\ S是第二类斯特林数 \] 首先你要把这个组合计数肝出来,于是我去翻了一波<组合数学> 用斯特林数容斥原理推导那个式子可以直接出卷积形式,见下一篇,本篇是分治fft做法 组合计数 斯特林数 \(S(n,i)\)表示将n个不同元素划分成i个相同集合非空的方案数 Bell数 \(B(n)=\sum\limits_{i=…
出处0.0用到第二类斯特林数的性质,做法好像很多,我打的是直接ntt,由第二类斯特林数的容斥公式可以推出,我们可以对于每一个i,来一次ntt求出他与所有j组成的第二类斯特林数的值,这个时候我们是O(n^2logn)的,还不如暴力,但是我们发现,对于刚刚提到的容斥的式子,将其化为卷积形式后,其一边的每一项对于每一个i都相同,另一边的每一项是对于所有的i形成一个n项的等比数列,这样我们可以把成等比数列的一边求和,用固定的一边去卷他们的和,这时候的答案的每一项就是所有的i的这一项的和,然后我们再O(n…
题目链接: https://www.lydsy.com/JudgeOnline/problem.php?id=4555 题目大意: 给定 \(S(n,m)\) 表示第二类斯特林数,定义函数 \(f(n)\) : \(f(n) = \sum_{i=0}^n\sum_{j=0}^iS(i,j)*2^j*(j!)\) \(S(i, j)\) 表示第二类斯特林数,递推公式为: \(S(i,j) = S(i-1,j-1) + j*S(i-1,j),(1 \leq j \leq i-1)\). 边界条件为:…