手写vector】的更多相关文章

看过JDK源码,现在自己想实现一个vector. 最开始的时候,我大概构想了一下怎么设计,一种是设置一个指针数组来存放对象,这样修改的时候可以不用大量的元素复制,但后来仔细想了想,它需要设置一个额外的位示图显示对应位置的元素情况,不划算,所以最终也是采取了JDK源码的设计思路.即,数组初始长度设置为10,以后快溢出之前将数组扩容为原先的1.5倍. #include <iostream> #include <cstring> using namespace std; class Ve…
实现我们分类数字的网络 好,让我们使用随机梯度下降和 MNIST训练数据来写一个程序来学习怎样识别手写数字. 我们用Python (2.7) 来实现.只有 74 行代码!我们需要的第一个东西是 MNIST数据.如果有 github 账号,你可以将这些代码库克隆下来, git clone https://github.com/mnielsen/neural-networks-and-deep-learning.git 或者你可以到这里 下载. 顺便说一下, 当我先前说到 MNIST 数据集时,我说…
本作业使用神经网络(neural networks)识别手写的阿拉伯数字(0-9) 关于使用逻辑回归实现多分类问题:识别手写的阿拉伯数字(0-9),请参考:http://www.cnblogs.com/hapjin/p/6085278.html 由于逻辑回归是线性分类(它的假设函数是一个线性函数,就是划一条直线,把数据分成了两类.可参考这篇文章中的:②使用逻辑回归来实现多分类问题(one-vs-all) 部分 的图片) 对于一些复杂的类别,逻辑回归就解决不了了.比如下面这个图片中的分类.(无法通…
转自http://blog.csdn.net/firefight/article/details/6452188 是MNIST手写数字图片库:http://code.google.com/p/supplement-of-the-mnist-database-of-handwritten-digits/downloads/list 其他方法:http://blog.csdn.net/onezeros/article/details/5672192 使用OPENCV训练手写数字识别分类器 1,下载训…
前言: SVM(支持向量机)一种训练分类器的学习方法 mnist 是一个手写字体图像数据库,训练样本有60000个,测试样本有10000个 LibSVM 一个常用的SVM框架 OpenCV3.0 中的ml包含了很多的ML框架接口,就试试了. 详细的OpenCV文档:http://docs.opencv.org/3.0-beta/doc/tutorials/ml/introduction_to_svm/introduction_to_svm.html mnist数据下载:http://yann.l…
参考了秋风细雨的文章:http://blog.csdn.net/candyforever/article/details/8564746 花了点时间编写出了程序,先看看效果吧. 识别效果大概都能正确. 好了,开始正题: 因为本程序是提取HOG特征,使用SVM进行分类的,所以大概了解下HOG的一些知识,其中我觉得怎么计算图像HOG特征的维度会对程序了解有帮助 关于HOG,我们可以参考: http://gz-ricky.blogbus.com/logs/85326280.html http://bl…
opencv 手写选择题阅卷 (二)字符识别 选择题基本上只需要识别ABCD和空五个内容,理论上应该识别率比较高的,识别代码参考了网上搜索的代码,因为参考的网址比较多,现在也弄不清是参考何处的代码了,在这里就不一一感谢了. 基本步骤: 一,识别函数接受一般64X64的灰度图像; 二,二值化并反色为黑底白字; 三,找出字符的最小包围矩形,并大小归一化为32X32; 四,计算图像的HOG特征; 五,用SVM分类器对HOG特征进行识别,从而确定当前图像属于ABCD还是空白; 整个识别代码还是比较简单的…
opencv 手写选择题阅卷 (三)训练分类器 1,分类器选择:SVM 本来一开始用的KNN分类器,但这个分类器目前没有实现保存训练数据的功能,所以选择了SVN分类器; 2,样本图像的预处理和特征提取代码与识别代码中使用一样的代码. 3,训练时的输入数据主要为两个矩阵,一个矩阵保存所有样本的特征数据,每一行一个图像,另一个矩阵保存每个样本所属的类别,比如 1.0代表A,2.0代表B,0代表空白. 4,所有样本分别保存在5个文件夹中(一个是空白,四个字母ABCD),用批处理生成一个文本文件包括所有…
Zinnia库及其实现方法研究 (转) zinnia是一个开源的手写识别库.采用C++实现.具有手写识别,学习以及文字模型数据制作转换等功能. 项目地址 [http://zinnia.sourceforge.net ] License: NewBSD 作者对SVM很有研究. 比同类程序的效率要高效.(同类项目如tegaki) 我的目的是通过这个研究简单的手写输入实现方法 Zinnia库特点 SVM机实现 轻量级,可移植 线程安全,可供C,C++,Perl,Python,Ruby调用 每秒50-1…
欢迎大家前往云+社区,获取更多腾讯海量技术实践干货哦~ 下载Demo - 2.77 MB (原始地址):handwritten_character_recognition.zip 下载源码 - 70.64 KB (原始地址) :nnhandwrittencharreccssource.zip 介绍 这是一篇基于Mike O'Neill 写的一篇很棒的文章:神经网络的手写字符识别(Neural Network for Recognition of Handwritten Digits)而给出的一个…