在过去几年,Apache Spark的採用以惊人的速度添加着,通常被作为MapReduce后继,能够支撑数千节点规模的集群部署. 在内存中数 据处理上,Apache Spark比MapReduce更加高效已经得到广泛认识:可是当数据量远超内存容量时,我们也听到了一些机构在Spark使用 上的困扰. 因此,我们与Spark社区一起.投入了大量的精力做Spark稳定性.扩展性.性能等方面的提升.既然Spark在GB或TB级别数据上执行 良好.那么它在PB级数据上也应当相同如此. 为了评估这些工作,近…
学习参考自 http://spark-internals.books.yourtion.com/markdown/4-shuffleDetails.html 1.  Shuffle read 边 fetch 边处理还是一次性 fetch 完再处理? 边 fetch 边处理. MapReduce shuffle 阶段就是边 fetch 边使用 combine() 进行处理,只是 combine() 处理的是部分数据.MapReduce 为了让进入 reduce() 的 records 有序,必须等…
一.概述 MapReduce框架对处理结果的输出会根据key值进行默认的排序,这个默认排序可以满足一部分需求,但是也是十分有限的.在我们实际的需求当中,往往有要对reduce输出结果进行二次排序的需求.对于二次排序的实现,网络上已经有很多人分享过了,但是对二次排序的实现的原理以及整个MapReduce框架的处理流程的分析还是有非常大的出入,而且部分分析是没有经过验证的.本文将通过一个实际的MapReduce二次排序例子,讲述二次排序的实现和其MapReduce的整个处理流程,并且通过结果和map…
设计思路: 使用mapreduce的默认排序,按照key值进行排序的,如果key为封装int的IntWritable类型,那么MapReduce按照数字大小对key排序,如果key为封装为String的Text类型,那么MapReduce按照字典顺序对字符串排序. 首先map阶段将输入的数字作为key,  并记录相同key出现的次数,在reduce阶段将输入的key作为输出的value,如果相同值存在多个,循环便利输出. 源数据:file1 2 32 654 32 15 756 65223 fi…
我在15年处理大数据的时候还都是使用MapReduce, 随着时间的推移, 计算工具的发展, 内存越来越便宜, 计算方式也有了极大的改变. 到现在再做大数据开发的好多同学都是直接使用spark, hive等工具, 很少有再写MapReduce的了. 这里整理一下MapReduce中经常用到的二次排序的方法, 全当复习. 简介 二次排序(secondary sort)问题是指在Reduce阶段对某个键关联的值排序. 利用二次排序技术,可以对传入Reduce的值完成 升序/降序 排序. MapRed…
网上查阅一些资料,收集整理如下: 1. 通用性 spark更加通用,spark提供了transformation和action这两大类的多个功能api,另外还有流式处理sparkstreaming模块.图计算GraphX等等:mapreduce只提供了map和reduce两种操作,流计算以及其他模块的支持比较缺乏. 2. 内存利用和磁盘开销 MapReduce的设计:中间结果需要写磁盘,Reduce写HDFS,多个MR之间通过HDFS交换数据,,可以提高可靠性,减少内存占用,但是牺牲了性能. S…
一.写在之前的 1.1 回顾Map阶段四大步骤 首先,我们回顾一下在MapReduce中,排序和分组在哪里被执行: 从上图中可以清楚地看出,在Step1.4也就是第四步中,需要对不同分区中的数据进行排序和分组,默认情况下,是按照key进行排序和分组. 1.2 实验场景数据文件 在一些特定的数据文件中,不一定都是类似于WordCount单次统计这种规范的数据,比如下面这类数据,它虽然只有两列,但是却有一定的实践意义. 3 3 3 2 3 1 2 2 2 1 1 1 (1)如果按照第一列升序排列,当…
本文给出一个实现MapReduce二次排序的例子 package SortTest; import java.io.DataInput; import java.io.DataOutput; import java.io.IOException; import org.apache.hadoop.io.*; public class SortComparable implements WritableComparable<SortComparable> { private Integer fi…
Alluxio的前身为Tachyon.Alluxio是一个基于内存的分布式文件系统:Alluxio以内存为中心设计,他处在诸如Amazon S3. Apache HDFS 或 OpenStack Swift存储系统和计算框架应用Apache Spark 或Hadoop MapReduce中间,它是架构在底层分布式文件系统和上层分布式计算框架之间的一个中间件. 对上层应用来讲.Alluxio是一个管理数据訪问和高速存储的中间层,对底层存储而言.Alluxio消除了大数据业务和存储系统依赖和鸿沟,…
1. 选择字段 在MongoDB中,选择字段又叫投影,表示仅选择所需要字段的数据,而不是选择整个文档字段的数据.如果某个文档有5个字段,但只要显示3个字段,那么就只选择3个字段吧,这样做是非常有好处的. find()方法在MongoDB查询文档中此方法接收的第二个可选参数是要检索的字段列表. 在MongoDB中,当执行find()方法时,它默认将显示文档的所有字段.为了限制显示的字段,需要将字段列表对应的值设置为1或0.1表示显示字段,而0表示隐藏字段. 语法: }) mycol有以下数据: ,…