[原创 深度学习与TensorFlow 动手实践系列 - 4]第四课:卷积神经网络 - 高级篇 提纲: 1. AlexNet:现代神经网络起源 2. VGG:AlexNet增强版 3. GoogleNet:多维度识别 4. ResNet:机器超越人类识别 5. DeepFace:结构化图片的特殊处理 6. U-Net:图片生成网络 7. 实例:剖析VGG,用模型进行模型参数可视化,特征提取,目标预测 期待目标: 1. 掌握AlexNet结构特点,神经网络各层之间特征传导关系,模型参数总数计算 2…
[原创 深度学习与TensorFlow 动手实践系列 - 3]第三课:卷积神经网络 - 基础篇 提纲: 1. 链式反向梯度传到 2. 卷积神经网络 - 卷积层 3. 卷积神经网络 - 功能层 4. 实例:卷积神经网络MNIST分类 期待目标: 1. 清楚神经网络优化原理,掌握反向传播计算. 2. 掌握卷积神经网络卷积层的结构特点,关键参数,层间的连接方式. 3. 了解不同卷积神经网络功能层的作用,会进行简单的卷积神经网络结构设计. 4. 能够运行TensorFlow卷积神经网络 MNIST. …
深度学习实战篇-基于RNN的中文分词探索 近年来,深度学习在人工智能的多个领域取得了显著成绩.微软使用的152层深度神经网络在ImageNet的比赛上斩获多项第一,同时在图像识别中超过了人类的识别水平.百度在中文语音识别上取得了97%的准确率,已经超过了人类的识别能力. 随着深度学习在越来越多的领域中取得了突破性进展,自然语言处理这一人工智能的重要领域吸引了大批的研究者的注意力.最近谷歌发布了基于深度学习的机器翻译(GNMT),和基于短语的机器翻译相比,错误率降低了55%-85%以上,从而又引发…
转自:https://zhuanlan.zhihu.com/p/23006190?refer=xiaoleimlnote 前面一直在写传统机器学习.从本篇开始写一写 深度学习的内容. 可能需要一定的神经网络基础(可以参考 Neural networks and deep learning 日后可能会在专栏发布自己的中文版笔记). RCNN (论文:Rich feature hierarchies for accurate object detection and semantic segment…
欢迎大家前往腾讯云技术社区,获取更多腾讯海量技术实践干货哦~ 作者:付越 导语 Tensorflow在更新1.0版本之后多了很多新功能,其中放出了很多用tf框架写的深度网络结构(https://github.com/tensorflow/models ),大大降低了开发难度,利用现成的网络结构,无论fine-tuning还是重新训练方便了不少.最近笔者终于跑通TensorFlow Object Detection API的ssd_mobilenet_v1模型,这里记录下如何完整跑通数据准备到模型…
Caffe( http://caffe.berkeleyvision.org/ )是一个清晰而高效的深度学习框架,其作者是博士毕业于UC Berkeley的贾扬清( http://daggerfs.com/ ),他目前在Google工作.Caffe是纯粹的C++/CUDA架构,支持命令行.Python和MATLAB接口:可以在CPU和GPU直接无缝切换:…
YOLO2 转自:https://zhuanlan.zhihu.com/p/25167153?refer=xiaoleimlnote 本文是对 YOLO9000: Better, Faster, Stronger (项目主页) 的翻译.加了个人理解和配图.内容参考了 YOLOv2 论文笔记 - Jesse_Mx .水平有限,错误之处欢迎指正. 1. 概述 YOLO2主要有两个大方面的改进: 使用一系列的方法对YOLO进行了改进,在保持原有速度的同时提升精度得到YOLOv2. 提出了一种目标分类与…
原论文链接:https://gitee.com/shaoxuxu/DeepLearning_PaperNotes/blob/master/YOLOv1.pdf 笔记版论文链接:https://gitee.com/shaoxuxu/DeepLearning_PaperNotes/blob/master/YOLOv1-PaperNotes.pdf 你只需要看一次:统一的.实时的目标检测 1. 简介 (1)主要作者简介: Joseph Redmon:YOLOv1.YOLOv2.YOLOv3.DarkN…
前言:本文是我对照原论文逐字逐句翻译而来,英文水平有限,不影响阅读即可.翻译论文的确能很大程度加深我们对文章的理解,但太过耗时,不建议采用.我翻译的另一个目的就是想重拾英文,所以就硬着头皮啃了.本文只作翻译,总结及代码复现详见后续的姊妹篇. Alex原论文链接:https://proceedings.neurips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf 使用深度卷积神经网络进行ImageNet图像分类 作者:A…
Faster R-CNN Fast-RCNN基本实现端对端(除了proposal阶段外),下一步自然就是要把proposal阶段也用CNN实现(放到GPU上).这就出现了Faster-RCNN,一个完全end-to-end的CNN对象检测模型. 论文提出:网络中的各个卷积层特征(feature map)也可以用来预测类别相关的region proposal(不需要事先执行诸如selective search之类的算法),但是如果简单的在前面增加一个专门提取proposal的网络又显得不够优雅,所…